

ARTESYN DS1100SLPE

1100 Watts Distributed Power System

Advanced Energy's Artesyn DS1100SLPE series bulk front end AC-DC power supply accepts a wide range 90–264 Vac input and provides a main 12 V output plus a 3.3 V standby output. Rated at 1,100 watts it is an 80 Plus Platinum supply with a high peak efficiency of 94%. Housed in an industry standard 1U x 2.1 inch rack-mounting package, the power supply is ideal for space-constrained applications. This series comes in two airflow versions – dc-connector to ac-connector and vice versa.

COMPLIANCE

- EMI Conducted/Radiated Class A Limits + 6 dB margin
- EN61000-4 Electromagnetic compatibility
- RoHS 6/6

SAFETY

- UL/cUL 62368 (UL Recognized)
- DEMKO+ CB Report EN62368
- CE Mark
- China CCC
- BSMI

SPECIAL FEATURES

- 1100 W output power
- High power and short form factor
- 1U power supply
- High density design: 26 W/in³
- Active Power Factor Correction
- EN61000-3-2 harmonic compliance
- Inrush current control
- 80plus Platinum Efficiency
- N+1 or N+N Redundant
- Hot-pluggable
- Active current sharing
- Full digital control
- PMBus compliant
- Accurate input power reporting
- Compatible with Artesyn's Universal PMBus GUI
- Reverse airflow option
- Two-year warranty

Front-end Bulk Power

Total Output Power:

1100 W continuous

Wide Input Voltage:

90 to 264 Vac

ELECTRICAL SPECIFICATIONS

Input	
Input range	90 - 264 Vac
Frequency	47 Hz to 63 Hz
Efficiency	94.0% peak
Max input current	14.5 Arms
Inrush current	55 Apk
Conducted EMI	Class A +6 dB margin
Radiated EMI	Class A +6 dB margin
Power factor	> 0.9 beginning at 20% load
ITHD	10%
Leakage current	1.75 mA
Hold-up time	16 ms at full load
Output	

Output						
		Main DC Outpu	t	S	Standby DC Output	
	MIN	NOM	MAX	MIN	NOM	MAX
Nominal setting	-1%	12	+1%	-1%	3.3	1%
Total output regulation range	11.64 V	12	12.36 V	3.14 V	3.3	3.46 V
Dynamic load regulation range	11.64 V		12.36 V	3.14 V		3.46 V
Output ripple			180 mVp-p			45 mVp-p
Output current	0.5 A ¹		90.0 A	0.1 A		3.0 A
Current sharing	Within ±5.625A of each other from N/A 25% to 100% load		N/A			
Capacitive loading	500 μF		11,000 μF	20 μF		1000 μF
Start-up from AC to output			2200 ms			1700 ms
Output rise time	5 ms		50 ms	2 ms		60 ms

Note: Outputs shall be isolated from the chassis ground by at least 50 V. 1 Minimum starting current for transient load response testing only. Unit is designed to operate and be within output regulation at zero load.

Protections			
Main Output	MIN	NOM	MAX
Overcurrent protection ²	107%		130%
Overvoltage protection ¹	13.2 V		15.0 V
Overtemperature protection		Yes, autorecovery	
Fan fault protection		Yes	
Standby Output			
Overcurrent protection ³ :	110%		150%
Overvoltage protection ¹	3.6 V		3.9 V

¹ Latch mode

 $^{2\ \}mathsf{No}\ \mathsf{shutdown}\ \mathsf{if}\ \mathsf{the}\ \mathsf{overcurrent} \mathsf{is}\ \mathsf{within}\ \mathsf{the}\ \mathsf{range}\ \mathsf{and}\ \mathsf{does}\ \mathsf{not} \mathsf{last}\ \mathsf{for}\ \mathsf{more}\ \mathsf{than}\ \mathsf{200}\ \mathsf{ms}, \mathsf{otherwise}\ \mathsf{latch}\ \mathsf{will}\ \mathsf{occur}$

³ Autorecovery

CONTROL AND STATUS SIGNALS

Input Signals	s		
PSON_L			
	ignal which enables/disables the main output. Pulling this sied pull-up resistor to VSB is 5.1 kohms. A 100 pF decoupling	•	
		MIN	MAX
V _{IL}	Input logic level LOW		0.8 V
V_{IH}	Input logic level HIGH	2.0 V	3.6 V
I _{SOURCE}	Current that may be sourced by this pin		2 mA
I _{SINK}	Current that may be sunk by this pin at low state		0.5 mA
PSKILL_H			
	st mate active LOW signal which enables/disables the main stor. A 100 pF decoupling capacitor is also recommended.	output. This signal will have to be pulle	d to ground at the system side with a
		MIN	MAX
V _{IL}	Input logic level LOW		0.8 V
V _{IH}	Input logic level HIGH	2.0 V	3.6 V
I _{SOURCE}	Current that may be sourced by this pin		2 mA
I _{SINK}	Current that may be sunk by this pin at low state		0.5 mA
VSENSE+, VS	ENSE-		
VSENSE+ and	l VSENSE- lines are the remote sense lines for regulation. Ea	ch line will compensate for a maximum	of 100 mV

ORDERING INFORMATION

Model Number	Nominal Main Output	Standby Output	Airflow Direction
DS1100SLPE-3	12 V	3.3 V @ 3 A	Std (forward)
DS1100SLPE-3-001	12 V	3.3 V @ 3 A	Reverse ¹

¹ Derating may apply

12C ADDRESSING

A1 Pin	A0 Pin	PMBus (w/r)
0	0	B0/B1
0	1	B2/B3
1	0	B4/B5
1	1	B6/B7

CONTROL AND STATUS SIGNALS (CONTINUED)

Output Signals

ACOK

Signal used to indicate the presence of AC input to the power supply. A logic level HIGH will indicate that the AC input to the power supply is within the operating range while a logic level LOW will indicate that AC has been lost.

This is an open collector/drain output. This pin is pulled high by a 10 kohm resistor connected to 3.3 V inside the power supply. It is recommended that this pin be onnected to a 100 pF decoupling capacitor and pulled down by a 100 kohm resistor.

		MIN	MAX
V _{IL}	Input logic level LOW		0.6 V
V _{IH}	Input logic level HIGH	2.0 V	3.6 V
I _{SOURCE}	Current that may be sourced by this pin		3.3 mA
I _{SINK}	Current that may be sunk by this pin at low state		0.7 mA

PWR_GOOD / PWOK

Signal used to indicate that main output voltage is within regulation range. The PWR_GOOD signal will be driven HIGH when the output voltage is valid and will be driven LOW when the output falls below the under-voltage threshold.

This signal also gives an advance warning when there is an impending power loss due to loss of AC input or system shutdown request. More details in the Timing Section.

This is an open collector/drain output. This pin is pulled high by a 10 kohm resistor connected to 3.3 V inside the power supply. It is recommended that this pin be connected to a 100 pF decoupling capacitor and pulled down by a 100 kohm resistor.

		MIN	MAX
V _{IL}	Input logic level LOW		0.8 V
V _{IH}	Input logic level HIGH	2.0 V	3.6 V
I _{SOURCE}	Current that may be sourced by this pin		3.3 mA
I _{SINK}	Current that may be sunk by this pin at low state		0.7 mA

Output Signals

PS_PRESENT

Signal used to indicate to the system that a power supply is inserted in the power bay. This pin is shorted to the standby return in the power supply. Recommended pull-up resistor to VSB is 5.1 kohms. A 100 pF decoupling capacitor is also recommended.

PS_INTERRUPT

Active low signal used by the power supply to indicate to the system that a change in power supply status has occurred. This event can be triggered by faults such as OVP, OCP, OTP, and fan fault. This signal can be cleared by a CLEAR_FAULT command. Recommended pull-up resistor to VSB is 5.1 kohms. A 100 pF decoupling capacitor is also recommended.

		MIN	MAX
V _{IL}	Input logic level LOW		0.8 V
V _{IH}	Input logic level HIGH	2.0 V	3.6 V
I _{SOURCE}	Current that may be sourced by this pin		4 mA
I _{SINK}	Current that may be sunk by this pin at low state		4 mA

BUS Signals

SHARE

Bus signal used by the power supply for active current sharing. All power supplies con# gured in the system for n+n sharing will refer to this bus voltage inorder to load share.

Voltage Range	The range of this signal for active sharing will be up to 8.0 V, which corresponds to the maximum output current.		
		MIN	MAX
I _{SHARE} Voltage	Input logic level LOW	7.75	8.25
	Voltage at 50% load, stand-alone unit	3.85	4.15
	Voltage at 0% load, stand-alone unit	0	1.0
I _{SOURCE}	Current that may be sourced by this pin		160 mA

SCL, SDA

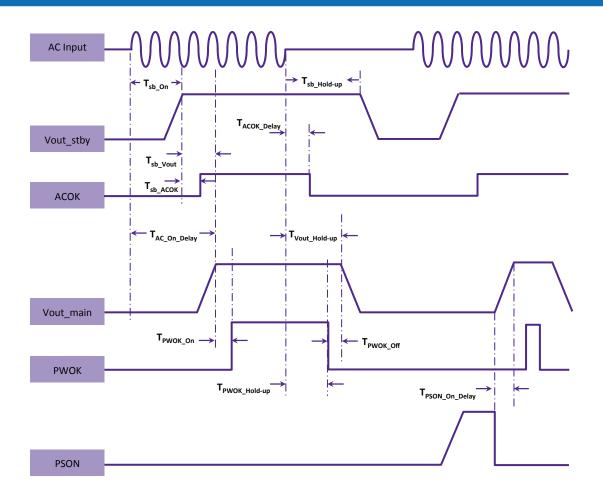
Clock and data signals de# ned as per I2C requirements. It is recommended that these pins be pulled-up to a 2.2 kohm resistor to 3.3 V and a

100 pF decoupling capacitor at the system side.			
VL	Input logic level LOW		0.8 V
VH	Input logic level HIGH	2.0 V	3.6 V

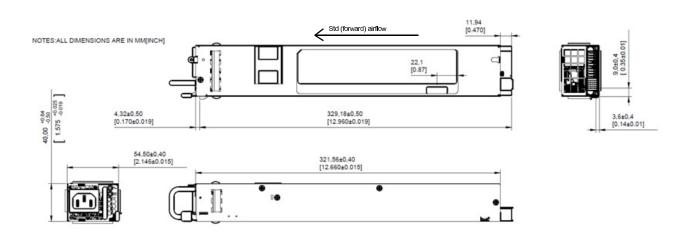
Note: All signal noise levels are below 400 mVpk-pk from 0 - 100 MHz.

ELECTRICAL SPECIFICATIONS

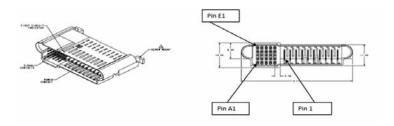
LED Indicators			
A single bi-color LED is used to indicate the power supply status.			
	Status LED	Fail LED	
Color	Green	Amber/Green	
No input to PSU	Off	Off	
Input present, STBY ON, main output OFF	On	Blinking Amber, at least 1 Hz	
Main output ON	On	green	
Power supply warning (hi-temp)	On	Blinking Amber/Green, at 1:1 ratio, at least 1 Hz	
Power supply warning (slow fan)	On	Blinking Amber/Green, at 1:1 ratio, at least 1Hz	
Power supply failure (OVP, OTP, FAN FAULT)	On	Amber	


Firmware Reporting And Monitoring				
	Accuracy Range			
Output loading	<10%	10% to 20%	20% to 100%	
Input voltage	±5%			
Input current	±1 A fixed error	±10%	±5%	
Input power	30 W fixed error up to 120 W	±15%	±10%	
Output voltage	±5% ±2%		±2%	
Output current	0.8 A fixed error	±15%	±5%	
Temperature	±5 °C			
Fan speed	Actual ±250 RPM			

PMBus	YES	
Remote ON/OFF	YES	


Timing Specification	s			
	Description	Min	Max	Unit
T _{sb_On}	Delay from AC being applied to standby output being within regulation		2500	ms
T _{sb_ACOK}	Delay from standby output to ACOK assertion		1500	ms
T _{sb_Vout}	Delay from standby output to main output voltage being within regulation		1000	ms
T _{AC_On_Delay}	Delay from AC being applied to main output being within regulation		3000	ms
T _{PWR_GOOD_On}	Delay from output voltages within regulation limits to PWOK asserted	100	1000	ms
T _{ACOK_Delay}	Delay from loss of AC to assertion of ACOK		20	ms
T _{PWR_GOOD_Hold-up}	Delay from loss of AC to deassertion of PWOK	5		ms
T _{Vout_Hold-up}	Delay from loss of AC to main output being within regulation	16		ms
T _{sb_Hold-up}	Delay from loss of AC to standby output being within regulation	25		ms
T _{PWR_GOOD_Off}	Delay from deassertion of PWOK to output falling out of regulation	1	700	ms
T _{PSON_On_Delay}	Delay from PSON assertion to output being within regulation		400	ms

TIMING DIAGRAM



MECHANICAL OUTLINE

OUTPUT CONNECTOR

Output Connector Part Number	TEI 2-1926736-2
Mating Connector Part Number	TEI 2-1926739-5, 1892787-6 or equivalent

Output Connector Pin Configuration		
A1	3.3 VSB	Standby Output
B1	3.3 VSB	Standby Output
C1	3.3 VSB	Standby Output
D1	3.3 VSB	Standby Output
E1	3.3 VSB	Standby Output
A2	SGND	Signal Ground
B2	SGND	Signal Ground
C2	Reserved	
D2	Reserved	
E2	Reserved	
А3	A2/A_Select	Optional address line
В3	A0	I ² C Address
C3	SDA	I ² C Data
D3	-Remote_Sense	Wire drop compensation
E3	+Remote_Sense	Wire drop compensation
A4	SCL	l ² C Clock
B4	PSON_L	Enable/Inhibit
C4	PS_INTERRUPT_L	Alert for failure
D4	A1	I ² C Address
E4	ACOK	Input indicator
A5	PSKILL_L	First break/lastmate pin
B5	ISHARE	Current share bus
C5	PWOK	Output indicator
D5	Reserved	
E5	PS_PRESENT_L	Power supply present
P1-P5	+12 V Return	Main output return contact
P6-P10	12 V	Main output power contact

DS1100SLPE

ENVIRONMENTAL SPECIFICATIONS

Operating temperature	DS1100SLPE-3 DS1100SLPE-3-001	Full power at -5 to 55 °C, can operate up to 65 °C at 660 W derated power Full power at -5 to 45 °C, can operate up to 55 °C at 660 W derated power	
Operating relative humidity	5% to 90% non-condensing		
Operating altitude	up to 10,000 feet		
Non-operating temperature	-40 to +70 °C		
Non-operating relative humidity	10% to 95% non-condensing		
Non-operating altitude	up to 50,000 feet		
Storage temperature	-40 to +85 °C		
Storage relative humidity	5% to 95% non-condensing		
Vibration and shock	Standard operating/non-operating random shock and vibration		
RoHS compliance	Yes		
MTBF	>500,000 hours using Telcordia Issue 2, Method 1 Case 1 at 40 °C ambient at full load.		
Operating life	Minimum of 7 years at typical operating conditions		
Reliability	All electronic component derating analysis and capacitor life calculation is done at 40 °C ambient, 80% of maximum rated load, nominal input line voltage.		

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, AE® and Artesyn™ are U.S. trademarks of Advanced Energy Industries, Inc.

For international contact information, visit advancedenergy.com.

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832