# ARTESYN LPQ200-M SERIES

200 Watts (forced air) 100 Watts (convection)

### **PRODUCT DESCRIPTION**

Advanced Energy's Artesyn LPQ200-M series with a 3 x 5 in footprint and a height of 1.32 in (less than 1U), offer a power density of more than 10 W per cubic inch and are capable of achieving efficiencies of up to 84 percent at full load. They are certified with ITE and medical safety approvals, making them ideal for use in a variety of IT, communications, medical, dental and laboratory applications. Outputs are adjustable from minus 20 percent to plus 10 percent and the power supplies can operate with input voltages of 90 Vac to 264 Vac (120 Vdc to 300 Vdc) and feature a maximum safety ground leakage current of just 275 uA with a 264 Vac input. LPQ200-M series power supplies are rated for operation from 0 to plus 50 degrees Celsius without derating, up to 70 degrees Celsius with derating, and can cold-start from temperatures as low as minus 20 degrees Celsius.

### SPECIAL FEATURES

- Medical and ITE safeties
- Active power factor correction
- 3" x 5" footprint
- Less than 1U high
- EN61000-3-2 compliant
- Remote sense
- Power fail
- Adjustable output
- Built-in Class B EMI filter
- Overvoltage protection
- Overload protection
- Thermal overload protection
- LPX200 enclosure kit available

### SAFETY

| ■ TUV | 62368 / 60601-1        |
|-------|------------------------|
| UL    | 60950/60601-1          |
| ■ CSA | 62368/60601-1          |
| ■ CB  | Certificate and report |
| ■ CE  | Mark (LVD)             |



### AT A GLANCE

#### **Total Power**

100 to 200 Watts

Input Voltage

90 to 264 Vac

### $\# \, of \, Outputs$

Quad





# **MODEL NUMBERS**

| Standard    | Output<br>Voltage | Minimum<br>Load | Maximum<br>Load<br>Convection<br>Cooling<br>(IO,maxCC) | Maximum<br>Load<br>Forced Air<br>30CFM<br>(IO,maxFA) | Peak Load <sup>1</sup> | Regulation <sup>2</sup> | Ripple<br>P/P(PARD) <sup>3</sup> |
|-------------|-------------------|-----------------|--------------------------------------------------------|------------------------------------------------------|------------------------|-------------------------|----------------------------------|
|             | +3.3 V            | 0 A             | 13 A                                                   | 18 A                                                 | 20 A                   | ± 2%                    | 50 mV                            |
| LPQ201-M    | +5 V              | 0 A             | 13 A                                                   | 18 A                                                 | 20 A                   | ± 5%                    | 50 mV                            |
|             | +12 V             | 0 A             | 5 A                                                    | 9 A                                                  | 10 A                   | ± 5%                    | 120 mV                           |
|             | -12 V             | 0 A             | 1 A                                                    | 2 A                                                  | 2.5 A                  | ± 5%                    | 120 mV                           |
|             | +5 V              | 0 A             | 13 A                                                   | 18 A                                                 | 20 A                   | ± 2%                    | 50 mV                            |
| LPQ202-M    | +12 V             | 0 A             | 5 A                                                    | 9 A                                                  | 10 A                   | ± 5%                    | 120 mV                           |
| LF Q202-1VI | +24 V             | 0 A             | 1.5 A                                                  | 3 A                                                  | 3.5 A                  | ± 7%                    | 240 mV                           |
|             | -12 V             | 0 A             | 1 A                                                    | 2 A                                                  | 2.5 A                  | ± 5%                    | 120 mV                           |

Note 1 - Peak current lasting <30 seconds with a maximum 10% duty cycle.

Note 2 - At 25 °C including initial tolerance, line voltage, load currents and output voltages adjusted to factory settings. Note 3 - Peak-to-peak with 20 MHz bandwidth and 10  $\mu$ F (tantalum capacitor) in parallel with a 0.1  $\mu$ F capacitor at rated line voltage and ranges.

Options

None



### **Absolute Maximum Ratings**

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

| Table 1. Absolute Maximum Ratings                                                                        |                                                      |                                          |                |             |                               |                          |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|----------------|-------------|-------------------------------|--------------------------|
| Parameter                                                                                                | Model                                                | Symbol                                   | Min            | Тур         | Max                           | Unit                     |
| Input Voltage<br>AC continuous operation<br>DC continuous operation                                      | All models<br>All models                             | V <sub>in,ac</sub><br>V <sub>in,dc</sub> | 90<br>120      | -           | 264<br>300                    | Vac<br>Vdc               |
| Maximum Output Power<br>Convection continuous operation                                                  | All models<br>All models                             | P <sub>O,maxCC</sub>                     | -              | -           | 100                           | W                        |
| Maximum Output Power<br>Forced air continuous operation – 30CFM                                          | All models<br>All models                             | P <sub>O,maxFA</sub>                     | -              | -           | 200                           | W                        |
| Isolation Voltage<br>Input to outputs<br>Input to safety ground<br>Output to output<br>Outputs to ground | All models<br>All models<br>All models<br>All models |                                          | -<br>-<br>-    | -<br>-<br>- | 4000<br>1500<br>100<br>500    | Vac<br>Vac<br>Vdc<br>Vac |
| Ambient Operating Temperature                                                                            | All models                                           | T <sub>A</sub>                           | 0              | -           | +70 <sup>1</sup>              | °C                       |
| Cold Start-up Temperature                                                                                | All models                                           | T <sub>ST</sub>                          | -20            | -           | -                             | °C                       |
| Storage Temperature                                                                                      | All models                                           | T <sub>STG</sub>                         | -40            | -           | +85                           | °C                       |
| Humidity (non-condensing)<br>Operating<br>Non-operating                                                  | All models<br>All models                             |                                          | 10<br>10       | -           | 90<br>95                      | %                        |
| Altitude<br>Operating<br>Non-operating                                                                   | All models<br>All models                             |                                          | -500<br>-1,000 |             | 13,000 <sup>2</sup><br>50,000 | feet<br>feet             |

Note 1 - Derate each output at 2.5% per degree C from 50°C to 70°C.

Note 2 - Derate maximum operating temperature by 1°C per 1,000 feet above 13,000 feet.



### **Input Specifications**

| Table 2. Input Specifications                                            |                                                         |                         |          |            |          |                 |
|--------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|----------|------------|----------|-----------------|
| Parameter                                                                | Condition                                               | Symbol                  | Min      | Тур        | Max      | Unit            |
| Operating Input Voltage, AC                                              | All                                                     | V <sub>IN AC</sub>      | 90       | 230        | 264      | Vac             |
| Input AC Frequency                                                       | All                                                     | F <sub>IN</sub>         | 47       | -          | 63       | Hz              |
| Operating Input Voltage, DC                                              | All                                                     | V <sub>IN,DC</sub>      | 120      | -          | 300      | Vdc             |
| Maximum steady state Input Current                                       | $V_{IN,AC} = 90 V_{AC}$                                 | I <sub>IN,max</sub>     | -        | -          | 2.6      | Aac             |
| No Load Input Current<br>(V <sub>o</sub> = nominal, I <sub>o</sub> = 0A) | $V_{IN,AC}$ = 90 $V_{AC}$<br>$V_{IN,AC}$ = 264 $V_{AC}$ | <sub>IN,no-load</sub>   | -        | 150<br>250 |          | mAac            |
| Harmonic Line Currents                                                   | All                                                     | THD                     |          | Per EN6    | 1000-3-2 | •               |
| Power Factor                                                             | $V_{IN,AC}$ = 115Vac<br>$P_{O}$ = $P_{O,maxFA}$         | PF                      | 0.90     | -          | -        |                 |
| Startup Surge Current (Inrush)<br>@ 25°C                                 | V <sub>IN,AC</sub> = 230V <sub>AC</sub>                 | I <sub>IN,inrush</sub>  | -        | -          | 50       | A <sub>PK</sub> |
| Input Fuse                                                               | Internal, L and N<br>F2A5, 250V, Type 392               |                         | -        | -          | 2.5      | А               |
| Input AC Undervoltage Lockout Voltage                                    | Po=Po,maxFA                                             | V <sub>IN,AC-stop</sub> | 65       | -          | 75       | Vac             |
| Input AC Low Line Start-up Voltage                                       | Po=Po,maxFA                                             | V <sub>IN,AC-star</sub> | 65       | -          | 75       | Vac             |
| No Load Input Power<br>(V <sub>o</sub> = nominal, I <sub>o</sub> = 0)    | V <sub>IN,AC</sub> = 115/230V <sub>AC</sub>             | P <sub>IN,no-load</sub> | -        | -          | 12       | W               |
| PFC Switching Frequency                                                  | All                                                     | f <sub>SW,PFC</sub>     | 45       | -          | 55       | KHz             |
| Ripple Switching Frequency                                               | All                                                     | f <sub>SW,DC-DC</sub>   | 115      | -          | 135      | KHz             |
| Efficiency<br>(T <sub>A</sub> = 25°C, forced air cooling)                | $V_{IN,AC}$ =100Vac<br>$P_{O}$ = $P_{O,maxFA}$          | η                       | 84       | -          | -        | %               |
| Hold Up Time                                                             | $V_{IN,AC} = 115Vac$<br>$P_O = P_{O,maxFA}$             | t <sub>Hold-Up</sub>    | 16       | -          | -        | mSec            |
| Turn On Delay Time                                                       | $V_{IN,AC}$ = 90Vac<br>$P_{O} = P_{O,maxFA}$            | t <sub>Turn-On</sub>    | -        | -          | 2        | Sec             |
| Leakage Current to safety ground                                         | V <sub>IN</sub> = 264Vac<br>f <sub>IN</sub> = 50/60 Hz  | <sub>IN,leakage</sub>   | -        | -          | 275      | uA              |
| System<br>Phase Margin<br>Gain Margin                                    | 330mF/A<br>Capacitive Load                              |                         | 45<br>10 |            |          | Ø<br>dB         |



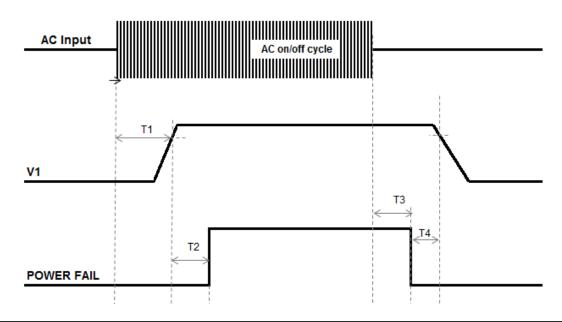
### **Output Specifications**

| Table 3. Output Specificatio                   | ns         |                                                          |                                                                      |                               |                              |                               |                     |
|------------------------------------------------|------------|----------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|------------------------------|-------------------------------|---------------------|
| Parameter                                      |            | Condition                                                | Symbol                                                               | Min                           | Тур                          | Max                           | Unit                |
| LPQ201-M                                       |            | Inclusive of setpoint, line,<br>load temperature change, | $\begin{matrix} V_1\\ V_2\\ V_3\\ V_4\end{matrix}$                   | 3.234<br>4.9<br>11.4<br>-11.4 | 3.30<br>5.0<br>12.0<br>-12.0 | 3.366<br>5.1<br>12.6<br>-12.6 | V                   |
| Output Regulation                              | LPQ202-M   | warm-up drift and cross<br>regulation                    | $\begin{matrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{matrix}$               | 4.9<br>11.4<br>23.28<br>-11.4 | 5.0<br>12.0<br>24.0<br>-12.0 | 5.1<br>12.6<br>24.72<br>-12.6 | V                   |
| Output Ripple, PK-PK                           | LPQ201-M   | Measure with a 0.1µF<br>ceramic capacitor in             | V <sub>1</sub><br>V <sub>2</sub><br>V <sub>3</sub><br>V <sub>4</sub> | -                             | -<br>-<br>-                  | 50<br>50<br>120<br>120        | mV <sub>PK-PK</sub> |
|                                                | LPQ202-M   | parallel with a 10μF<br>tantalum capacitor               | V <sub>1</sub><br>V <sub>2</sub><br>V <sub>3</sub><br>V <sub>4</sub> |                               | -<br>-<br>-                  | 50<br>120<br>240<br>120       | тV <sub>РК-РК</sub> |
| Convection Output Current,                     | LPQ201-M   | Convection cooling                                       | I <sub>O,maxCC</sub>                                                 | 0 0 0                         | -<br>-<br>-                  | 13<br>13<br>5<br>1            | A                   |
| continuous                                     | LPQ202-M   | Convection cooling                                       | I <sub>O,maxCC</sub>                                                 | 0 0 0                         | -<br>-<br>-                  | 13<br>5<br>1.5<br>1           | А                   |
| Maximum Convection<br>Output Power, continuous | All models | All outputs                                              | P <sub>O,maxCC</sub>                                                 | -                             | -                            | 100                           | W                   |
| Force Air Output Current,                      | LPQ201-M   | 30 CFM force air                                         | I <sub>O,maxFA</sub>                                                 | 0<br>0<br>0                   | -<br>-<br>-                  | 18<br>18<br>5<br>1            | А                   |
| continuous                                     | LPQ202-M   | cooling                                                  | I <sub>O,maxFA</sub>                                                 | 0<br>0<br>0                   | -<br>-<br>-                  | 18<br>9<br>3<br>2             | A                   |
| Maximum Force air Output<br>Power, continuous  | All models | Main output , 30 CFM                                     | P <sub>O,maxFA</sub>                                                 | -                             | -                            | 200                           | W                   |
|                                                | LPQ201-M   | Maximum duration <30<br>seconds,                         | l <sub>O,peak</sub>                                                  |                               |                              | 20<br>20<br>10<br>2.5         | A                   |
| Output Current, peak                           | LPQ202-M   | maximum duty cycle <10%                                  | I <sub>O,peak</sub>                                                  |                               | -<br>-<br>-                  | 20<br>10<br>3.5<br>2.5        | А                   |



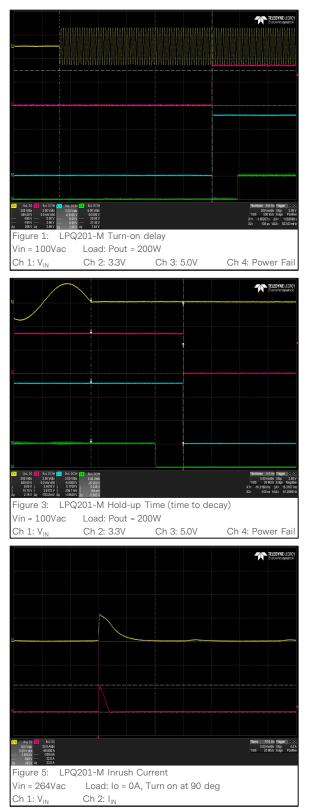
### **Output Specifications**

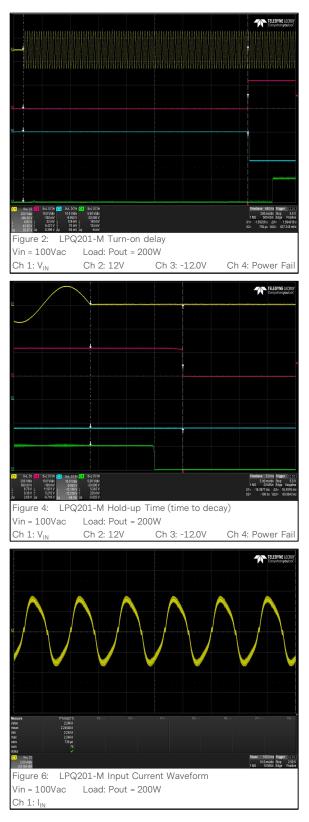
| Parameter                                         |                                                           | Condition                                                                                      | Symbol                                                                   | Min                      | Ture                     | Max                             | Unit                       |
|---------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|--------------------------|---------------------------------|----------------------------|
|                                                   | LPQ201-M                                                  |                                                                                                | %V <sub>1</sub><br>%V <sub>2</sub><br>%V <sub>3</sub><br>%V <sub>4</sub> | -15<br>-20<br>-20<br>-20 | Тур<br>-<br>-<br>-       | +10<br>+10<br>+10<br>+10<br>+10 | %                          |
| Output Adjust Range                               | LPQ202-M                                                  | V <sub>IN,AC</sub> = 100V <sub>AC</sub><br>I <sub>O</sub> =0A                                  | %V <sub>1</sub><br>%V <sub>2</sub><br>%V <sub>3</sub><br>%V <sub>4</sub> | -20<br>-20<br>-10<br>-20 | -                        | +10<br>+10<br>+20<br>+10        | %                          |
|                                                   | LPQ201-M                                                  |                                                                                                | -<br>-<br>-                                                              | 0                        | -<br>-<br>-              | 330<br>330<br>1500<br>330       | μF/A<br>μF/A<br>μF<br>μF/A |
| V <sub>O</sub> Capacitive Load                    | LPQ201-M                                                  | Startup                                                                                        |                                                                          | 0                        |                          | 330<br>1500<br>330<br>330       | μF/A<br>μF/A<br>μF<br>μF/A |
|                                                   | 50% (50% to 100% of<br>I <sub>O.maxFA</sub> ) load change | V                                                                                              | -<br>-<br>-                                                              | -<br>-<br>-              | 165<br>250<br>600<br>480 | mV                              |                            |
| Deviation                                         | LPQ202-M                                                  | Slew rate = 1A/µs Output<br>capacitance = 100µF/A                                              | V                                                                        | -<br>-<br>-              | -<br>-<br>-              | 250<br>600<br>960<br>480        | mV                         |
| V <sub>o</sub> Dynamic Response -<br>Setting Time | All models                                                | 50% (50% to 100% of $I_{O,maxFA}$ ) load change Slew rate = 1A/µs Output capacitance = 100µF/A | t <sub>s</sub>                                                           | -                        | -                        | 500                             | μSec                       |
| V <sub>o</sub> Turn On Overshoot                  | LPQ201-M                                                  |                                                                                                | V                                                                        | -<br>-<br>-              | -<br>-<br>-              | 150<br>150<br>360<br>360        | mV                         |
| v <sub>o</sub> rum on oversnoot                   | LPQ202-M                                                  | l <sub>o</sub> = 0                                                                             | V                                                                        | -<br>-<br>-              | -<br>-<br>-              | 150<br>360<br>720<br>360        | mV                         |
| V <sub>O</sub> Long Term Stability -              | LPQ201-M                                                  | Max change over 24 hours                                                                       | ±%V <sub>o</sub>                                                         | -<br>-<br>-              | -<br>-<br>-              | 0.1<br>0.1<br>1.0<br>1.0        | %                          |
|                                                   | LPQ202-M                                                  | after thermal equilibrium<br>(30 mins)                                                         | ±%V <sub>o</sub>                                                         | -<br>-<br>-              | -<br>-<br>-              | 0.1<br>1.0<br>1.0<br>1.0        | %                          |
| V <sub>o</sub> Over Voltage Protection            |                                                           | Latch off<br>(AC recycle to reset)                                                             | %V <sub>o</sub>                                                          | 130                      | -                        | 150                             | %                          |




### **Output Specifications**

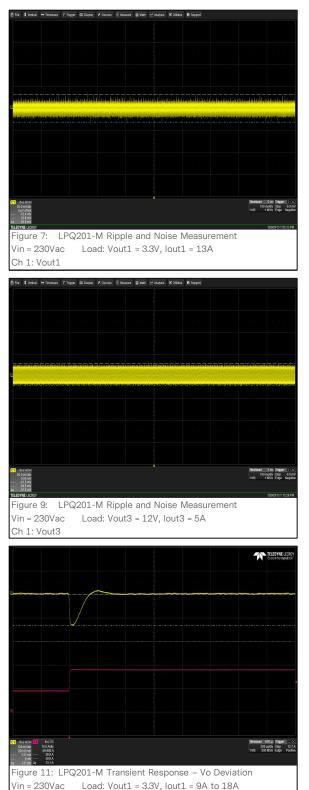
| Table 3. Output Specifications Con't |                                             |                    |               |     |     |      |  |  |  |
|--------------------------------------|---------------------------------------------|--------------------|---------------|-----|-----|------|--|--|--|
| Parameter                            | Condition                                   | Symbol             | Min           | Тур | Max | Unit |  |  |  |
| $V_{O}$ Over Current Protection      | All                                         | %I <sub>0</sub>    | 110           | -   | 160 | %    |  |  |  |
| Over Temperature Protection          | All                                         |                    | Auto Recovery |     |     |      |  |  |  |
| Short Circuit Protection             | All                                         |                    | Auto Recovery |     |     |      |  |  |  |
| Remote Sense, + and -                | Maximum compensation<br>at each output line | V <sub>SENSE</sub> | -             | -   | 500 | mV   |  |  |  |

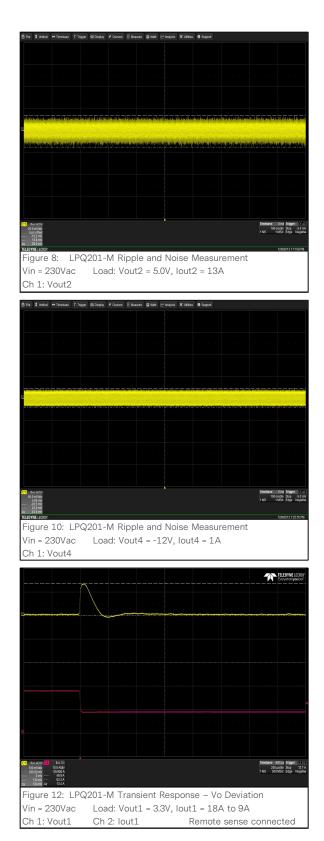




### System Timing Diagram



| Table 7. Timing specifications of the Power Fail signal |                                                |        |     |     |     |      |  |  |  |
|---------------------------------------------------------|------------------------------------------------|--------|-----|-----|-----|------|--|--|--|
| Parameter                                               | Condition                                      | Symbol | Min | Тур | Max | Unit |  |  |  |
| Turn On Delay T1                                        | $V_{IN,AC} = 100Vac$<br>$P_O = P_{O,maxFA}$    | T1     | -   | -   | 2   | Sec  |  |  |  |
| Power Fail Delay T2                                     | $V_{IN,AC} = 100Vac$<br>$P_O = P_{O,maxFA}$    | T2     | 100 | -   | 500 | mSec |  |  |  |
| Power Fail Warning T3                                   | $V_{IN,AC} = 100Vac$<br>$P_O = P_{O,maxFA}$    | T3     | 12  | -   | -   | mSec |  |  |  |
| Turn Off Delay T4                                       | $V_{IN,AC} = 100Vac$<br>$P_O = P_{O,maxFA}$    | Τ4     | 4   | -   | -   | mSec |  |  |  |
| Power Fail DelayT3+T4                                   | $V_{IN,AC}$ = 100 Vac<br>$P_O$ = $P_{O,maxFA}$ | T3+T4  | 16  | -   | -   | mSec |  |  |  |



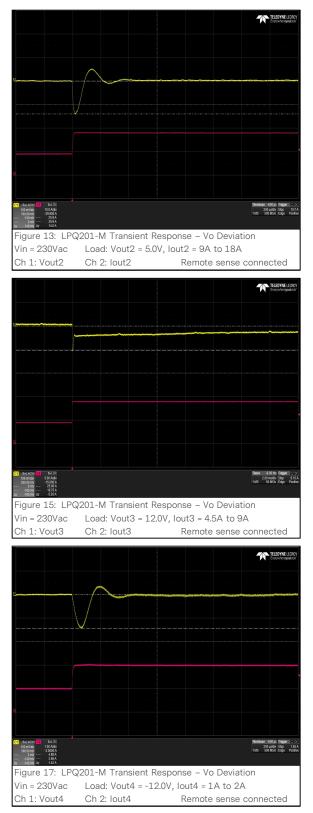



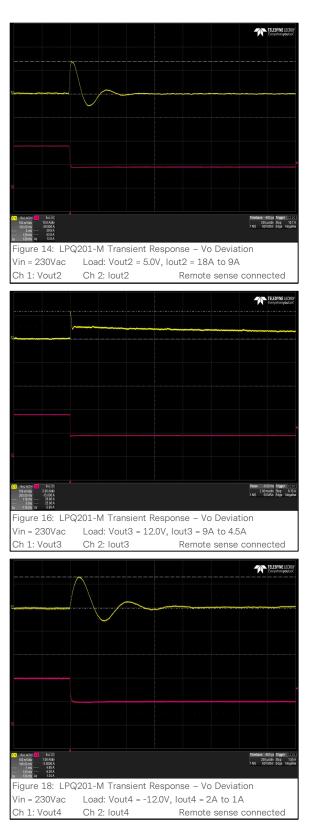


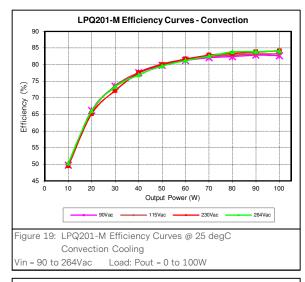



### LPQ201-M Performance Curves

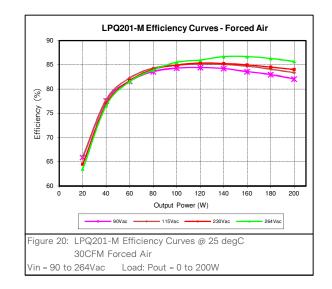




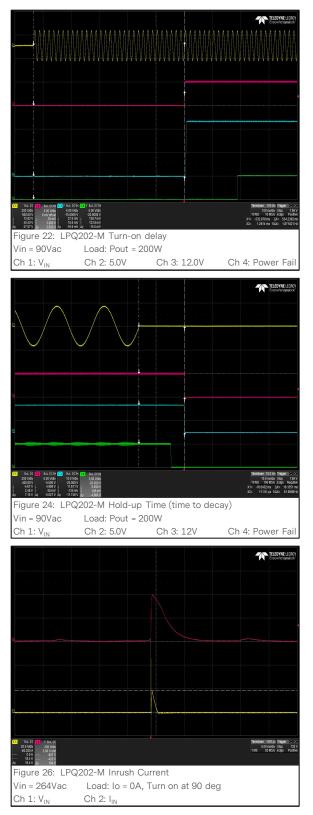



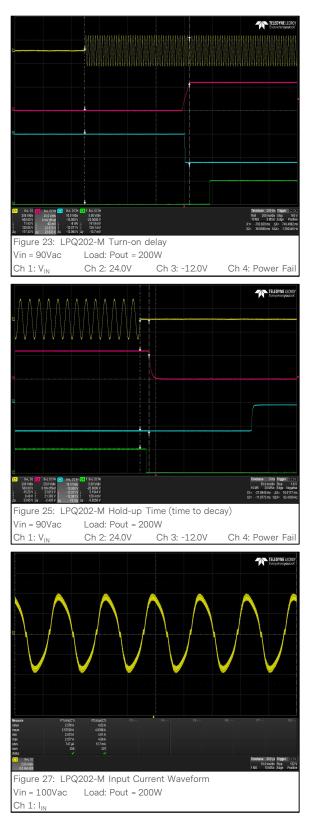


Ch 2: lout1


Ch 1: Vout1

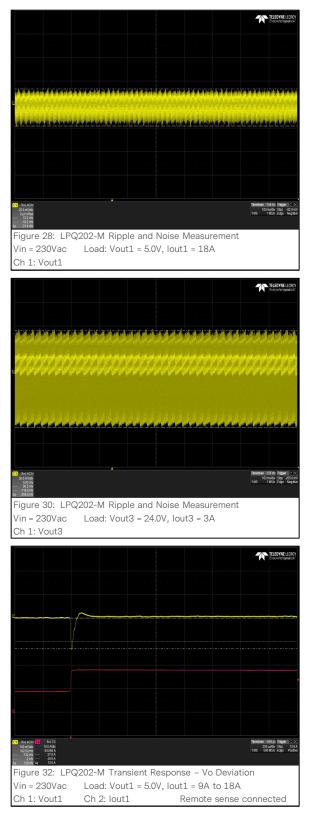

Remote sense connected

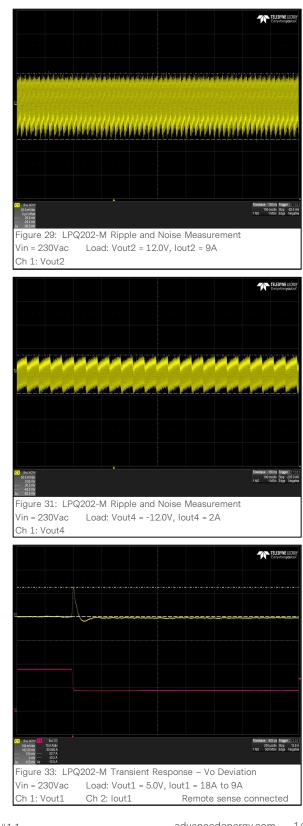




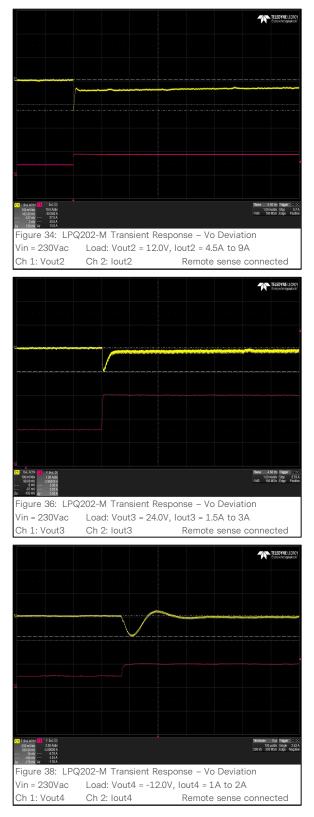



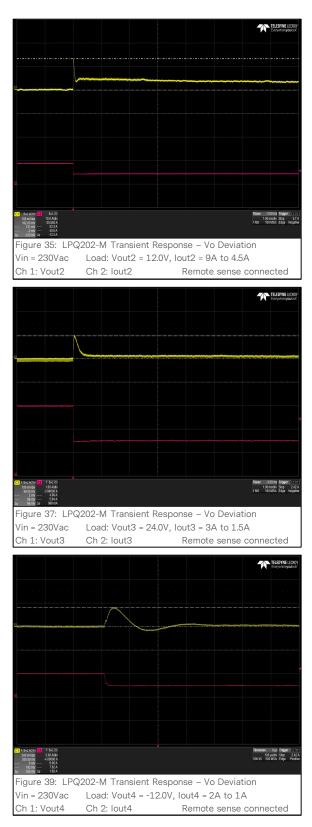


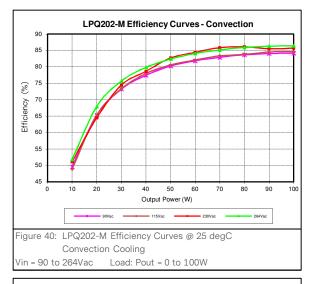



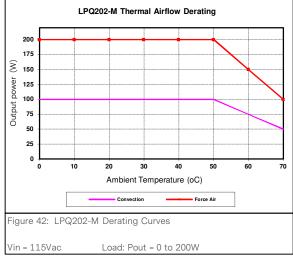


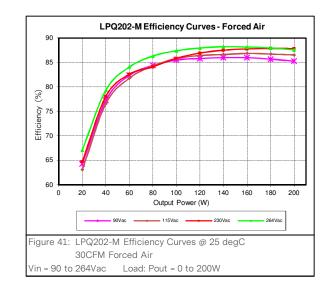


















### **Protection Function Specifications**

#### **Input Fuse**

Protective fuse will be provided on the "Line" and "Neutral" side of the primary line of each power supply.

#### Over Voltage Protection (OVP)

Over-voltage protection will be provided for V1 and V2 on the LPQ201-M and V1 on the LPQ202-M referenced to the minus remote sense. The over-voltage point will be between 130% and 150% of nominal output. The power supply must latch off during over-voltage with the AC line recycled to reset the latch.

#### LPQ201-M

| Parameter               | Min  | Тур | Max  | Unit |
|-------------------------|------|-----|------|------|
| 3.3V Output Overvoltage | 4.29 | /   | 4.95 | V    |
| 5V Output Overvoltage   | 6.5  | /   | 7.5  | V    |
| 12V Output Overvoltage  | -    | -   | -    | V    |
| -12V Output Overvoltage | -    | -   | -    | V    |

#### LPQ202-M

| Parameter               | Min | Тур | Max | Unit |
|-------------------------|-----|-----|-----|------|
| 5V Output Overvoltage   | 6.5 | /   | 7.5 | V    |
| 12V Output Overvoltage  | -   | -   | -   | V    |
| 24V Output Overvoltage  | -   | -   | -   | V    |
| -12V Output Overvoltage | -   | -   | -   | V    |



### **Over Current Protection (OCP)**

The OCP range for V1, V2 and V3 output is 110% - 160% of full load, and 150% - 250% for V4 output at nominal line 47 – 63Hz.

LPQ201-M

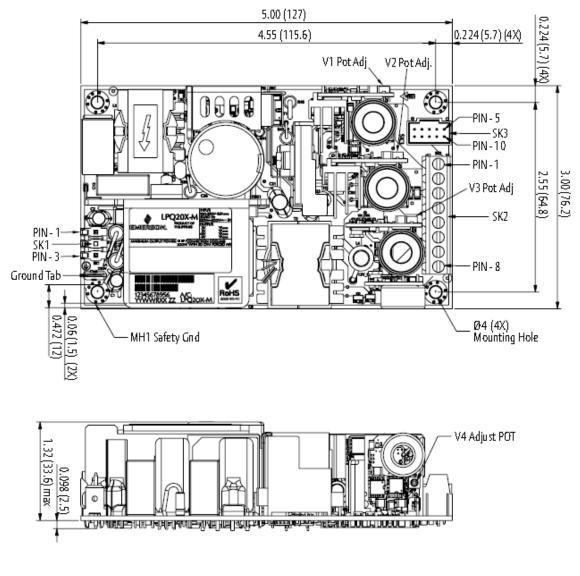
| Parameter               | Min  | Тур | Мах  | Unit |
|-------------------------|------|-----|------|------|
| 3.3V Output Overvoltage | 19.8 | /   | 28.8 | A    |
| 5V Output Overvoltage   | 19.8 | /   | 28.8 | A    |
| 12V Output Overvoltage  | 9.9  | /   | 14.4 | A    |
| -12V Output Overvoltage | 3    | /   | 5    | A    |

#### LPQ202-M

| Parameter               | Min  | Тур | Max  | Unit |
|-------------------------|------|-----|------|------|
| 5V Output Overvoltage   | 19.8 | /   | 28.8 | A    |
| 12V Output Overvoltage  | 9.9  | /   | 14.4 | A    |
| 24V Output Overvoltage  | 3.3  | /   | 4.8  | A    |
| -12V Output Overvoltage | 3    | /   | 5    | A    |

#### Short Circuit Protection (SCP)

The power supply will protect itself when any output is shorted to ground or to any other output. The power supply will withstand a continuous short circuit with no permanent damage. The power supply will automatically restart when shorts to ground are removed. A short is defined as impedance less than 50 milliohms.


#### **Over Temperature Protection (OTP)**

The power supply will shut down in the event over temperature. Automatic recovery when the temperature falls below OTP threshold (including hysteresis).



### **MECHANICAL SPECIFICATIONS**

Mechanical Outlines (Dimensioning and Mounting Locations)

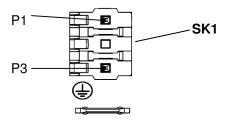


- All dimensions in inches [mm], tolerance is +/-0.02" [0.5mm]

- Mounting holes M1 should be grounded for EMI purpose

- Mounting hole M1 is safety ground connection

- This power supply requires mounting on standoffs 0.20" [5.0mm] in height




P2

# **MECHANICAL SPECIFICATIONS**

### **Connector Definitions**

AC Input Connector – SK1 Pin 1 - Neutral Pin 3 - Line



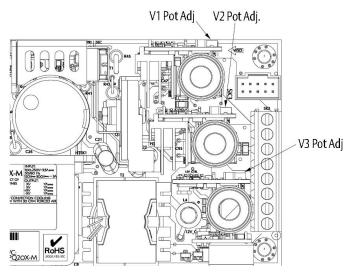
**P1** 

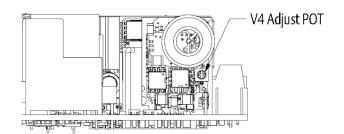
Output Connector – SK2 Pin 1 – V1 OUT Pin 2 – V2 OUT Pin 3 – GND OUT Pin 4 – GND OUT Pin 5 – GND OUT Pin 6 – GND OUT Pin 7 – V3 OUT Pin 8 – V4 OUT

Control Signal Header – SK3 Pin 1 – +V1 Remote sense Pin 2 – -V1 Remote sense Pin 3 – N/C Pin 4 – N/C Pin 5 – + Power Fail Pin 6 – Common Pin 7 – N/C Pin 8 – Common Pin 9 – +V2 Remote Sense (LPQ201-M only) Pin 10 – -V2 Remote Sense (LPQ201-M only)

P1 P5 P1 P5 P6 P5 SK3

SK2





### **MECHANICAL SPECIFICATIONS**

### Power / Signal Mating Connectors and Pin Types

| Table 4. Mating Connectors for LPQ200-M Series |         |                                   |                                        |
|------------------------------------------------|---------|-----------------------------------|----------------------------------------|
| Reference                                      | Vendor  | Mating Connector<br>or Equivalent | Mating Pins/Terminals<br>or Equivalent |
| SK1                                            | Molex   | 09-50-8031                        | 08-52-0113                             |
| GND                                            | Molex   | 01-90020001                       |                                        |
| SK3                                            | Molex   | 90142-0010 (USA)                  | 90119-2110                             |
|                                                | LANDWIN | 2580S0803                         | 2583T021V                              |

### **Potentiometer Definitions**







# **MECHANICAL SPECIFICATIONS**

### Weight

The LPQ200-M series weight is 1.5 lbs / 681g maximum.



### **EMC** Immunity

LPQ200-M series power supply is designed to meet the following EMC immunity specifications.

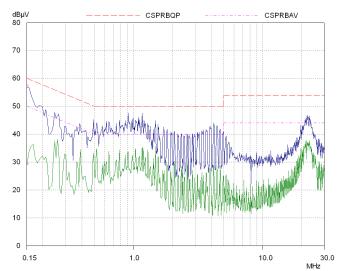
| Table 5. Environmental Specifications |                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Document                              | Description                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| EN 61000-4-2                          | ESD up to 4kV contact, 8kV discharge                                                                                                                                                                                                                                                                                                           |  |  |  |
| EN61000-4-3                           | RFI 3V/m                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| EN 61000-4-4                          | Electrical Fast Transients level 3 minimum                                                                                                                                                                                                                                                                                                     |  |  |  |
| EN 61000-4-5                          | Surge level 3 minimum                                                                                                                                                                                                                                                                                                                          |  |  |  |
| EN 61000-4-6                          | Radio frequency common mode, Levels 3V (rms)<br>Modulated AM 80%, 1 kHz, 150 ohm source impedance                                                                                                                                                                                                                                              |  |  |  |
| EN 61000-4-8                          | Power Frequency Magnetic Immunity, 1 A/m                                                                                                                                                                                                                                                                                                       |  |  |  |
| EN 61000-4-11                         | AC Input transients (Reference EN 60601-1:2001)    Condition Criteria   > 95% dip, 0.5 period A   60% dip, 5.0 periods B (A when Vin >160 VAC)   30% dip, 25 periods A   > 95% dip, 5 Sec B   Note: For conditions where Criteria A cannot be met, characterize the boundary condition (Line and/or Load) where Criteria A becomes Criteria B. |  |  |  |
| EN 61000-3-2                          | Harmonic currents emission                                                                                                                                                                                                                                                                                                                     |  |  |  |
| EN60601-1-2 Latest amendment          | European Community Safety investigated and marketed by TUV or VDE                                                                                                                                                                                                                                                                              |  |  |  |
| CSA 601-1 and -C22.2 No. 60950        | Standards for safety                                                                                                                                                                                                                                                                                                                           |  |  |  |
| CE Marking                            | LVD and EMC                                                                                                                                                                                                                                                                                                                                    |  |  |  |



### **Safety Certifications**

The LPQ200-M series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

| Table 6. Safety Certifications for LPQ200-M Series Power Supply System |                       |                                                                                     |  |  |
|------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------|--|--|
| Document                                                               | File #                | Description                                                                         |  |  |
| UL60950-1 (or latest)                                                  | E186249-A120-UL       | Safety of information Technology Equipment, including electrical business equipment |  |  |
| IEC 60950-1(ed.2), IEC 60950-<br>1(ed.2);am1, IEC 60950-1(ed.2);am2    | DK-48619-UL           | International Requirements                                                          |  |  |
| IEC 60601-1:2005, IEC 60601-<br>1:2005/AMD1:2012                       | SG PSB-MD-00098       | 211-600479-000                                                                      |  |  |
| UL 60601-1 1st Ed / CSA-C22.2 No.<br>601.1-M90                         | E182560-A16-UL        | Safety of Medical Electric Equipment.                                               |  |  |
| EN 62368-1:2014/A11:2017, EN 60601-<br>1:2006/A1:2013                  | B 013890 3171 Rev. 00 | European Community Safety investigated and marketed by TUV                          |  |  |
| EN60601-1 latest amendment                                             | B 13 01 51485 01249   | European Community Safety investigated and marketed by TUV or VDE                   |  |  |
| CB Certificate and Report                                              | SG-MD-00153A1         | (All CENELEC Countries)                                                             |  |  |
| CE Mark                                                                | 13132                 | LVD                                                                                 |  |  |


### **EMI Emissions**

The LPQ200-M series has been designed to comply with the Class B limits of EMI requirements of EN55032 (FCC Part 15) and CISPR 22 (EN55022) for emissions and relevant sections of EN61000 (IEC 61000) for immunity.

The unit is enclosed inside a metal box, tested at 200W using resistive load with cooling fan.

#### **Conducted Emissions**

The applicable standard for conducted emissions is EN55022 (FCC Part 15). Conducted noise can appear as both differential mode and common mode noise currents. Differential mode noise is measured between the two input lines, with the major components occurring at the supply fundamental switching frequency and its harmonics. Common mode noise, a contributor to both radiated emissions and input conducted emissions, is measured between the input lines and system ground and can be broadband in nature.



The LPQ200-M series power supply have internal EMI filters to ensure the convertor's conducted EMI levels comply with EN55022 (FCC Part 15) Class B and EN55022 (CISPR 22) Class B limits. The EMI measurements are performed with resistive loads under forced air convection at maximum rated loading.

Sample of EN55022 Conducted EMI Measurement at 100Vac input

Note: Blue Line refers to Advanced Energy Quasi Peak margin, which is 6dB below the CISPR international limit. Pink Line refers to Advanced Energy Average margin, which is 6dB below the CISPR international limit.

| Parameter                  | Model | Symbol | Min | Тур | Max | Unit |
|----------------------------|-------|--------|-----|-----|-----|------|
| FCC Part 15, class B       | All   | Margin | 6   | -   | -   | dB   |
| CISPR 22 (EN55022) class B | All   | Margin | 6   | -   | -   | dB   |

Conducted EMI emissions specifications of the LPQ200-M series:

#### **Radiated Emissions**

Unlike conducted EMI, radiated EMI performance in a system environment may differ drastically from that in a stand-alone power supply. The shielding effect provided by the system enclosure may bring the EMI level from Class A to Class B. It is thus recommended that radiated EMI be evaluated in a system environment. The applicable standard is EN55022 Class A (FCC Part 15). Testing ac-dc convertors as a stand-alone component to the exact requirements of EN55022 can be difficult, because the standard calls for 1m leads to be attached to the input and outputs and aligned such as to maximize the disturbance. In such a set-up, it is possible to form a perfect dipole antenna that very few ac-dc convertors could pass. However, the standard also states that 'an attempt should be made to maximize the disturbance consistent with the typical application by varying the configuration of the test sample'.



#### Storage and Shipping Temperature / Humidity

The LPQ200-M series power supply is designed to meet all of its specifications during any combination of operating ambient conditions and after exposure to any combination of non-operating ambient conditions specified in this section.

#### Altitude

The LPQ200-M series will operate within specifications at altitudes up to 10,000 feet above sea level. The power supply will not be damaged when stored at altitudes of up to 30,000 feet above sea level.

#### Humidity

The LPQ200-M series will operate within specifications when subjected to a relative humidity from 20% to 90% non-condensing. The LPQ200-M series can be stored in a relative humidity from 10% to 95% non-condensing.

#### Vibration

The LPQ200-M series power supply will pass the following vibration specifications:

#### Non-Operating Random Vibration

| Acceleration    | 2.7                                                   |                                                 | gRMS                                                                                             |
|-----------------|-------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Frequency Range | 10-2000                                               |                                                 | Hz                                                                                               |
| Duration        | 20                                                    |                                                 | mins                                                                                             |
| Direction       | 3 mutually perpendicular axis                         |                                                 |                                                                                                  |
| PSD Profile     | <b>FREQ</b><br>10-190 Hz<br>190-210 Hz<br>210-2000 Hz | SLOPE<br><u>dB/oct</u><br><br>-31.213dB/oct<br> | <b>PSD</b><br><u>g<sup>2</sup>/Hz</u><br>0.01 g <sup>2</sup> /Hz<br><br>0.003 g <sup>2</sup> /Hz |

#### **Operating Random Vibration**

| Acceleration    | 1.0                           |                        | gRMS |                                           |
|-----------------|-------------------------------|------------------------|------|-------------------------------------------|
| Frequency Range | 10-500                        |                        | Hz   |                                           |
| Duration        | 20                            |                        | mins |                                           |
| Direction       | 3 mutually perpendicular axis |                        |      |                                           |
| PSD Profile     | <b>FREQ</b><br>10-500 Hz      | SLOPE<br><u>dB/oct</u> |      | <b>PSD</b><br><u>g²/Hz</u><br>0.002 g²/Hz |



### Shock

The LPQ200-M series power supply will pass the following vibration specifications

### Non-Operating Half-Sine Shock

| Acceleration | 30                         | G    |
|--------------|----------------------------|------|
| Duration     | 18                         | msec |
| Pulse        | Half-Sine                  |      |
| No. of Shock | 3 shock on each of 6 faces |      |

### Operating Half-Sine Shock

| Acceleration | 30                         | G    |
|--------------|----------------------------|------|
| Duration     | 11                         | msec |
| Pulse        | Half-Sine                  |      |
| No. of Shock | 3 shock on each of 6 faces |      |



### POWER AND CONTROL SIGNAL DESCRIPTIONS

#### AC Input (SK1)

This connector supplies the AC Mains to the LPQ200-M series power supply.

Pin 1 - Neutral

Pin 3 – Line

#### Earth Ground (GND)

This tab connector is the safety ground connection and should be connected to AC input earth ground.

GND - Earth Ground (Safety Ground)

#### Main Output (SK2)

These terminals provide the main output for the LPQ200-M. The Vo and the Output Return terminals are the positive and negative rails, respectively of the main output of the LPQ200-M series power supply. The Main Output is electrically isolated from the Earth Ground and can be operated as a positive or negative output.

Pin 1 – V1 OUT Pin 2 – V2 OUT Pin 3 – GND OUT Pin 5 – GND OUT Pin 6 – GND OUT Pin 7 – V3 OUT Pin 8 – V4 OUT

#### Vo Output voltage adjustment

Outputs on the Quad models outputs will be adjustable -20%, +10%, except for the 3V3 output which will be -15%, +10% and +24V output which will be -10%, +20%.

#### **Control Signal (SK3)**

The LPQ200-M series contains a 10 pins control signal header providing analogy control interface.

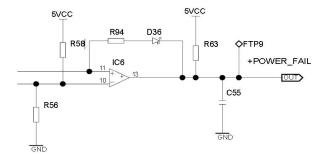


### POWER AND CONTROL SIGNAL DESCRIPTIONS

#### Control Signal (SK3)

The LPQ200-M series contains a 10 pins control signal header providing analogy control interface.

#### +Remote Sense, -Remote Sense (Remote Sensing) - (SK3 - Pin1, 2, 9, 10)


The power supplies will provide remote sensing on the low voltage main output. It will compensate for up to 400 mV in each load line (800 mV in total). There will be reverse sense (to the their own output) and cross charging protection which will not cause damage to the power supply. This will be accomplished by using PTC pull up and pull down resistors to the main output. The output will remain in regulation regardless of sense configuration. The sensed output will not change by more than 1% between all sense configurations. The maximum terminal voltage under any operational condition will not exceed the maximum specified adjustment range terminal voltage when the unit is operating with local sensing (+20%) provided the total output power does not exceed the maximum rating.

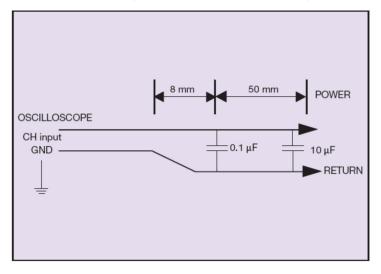
N/C - (SK3 - Pin3, 4, 7)

GND- (SK3 – Pin6 and Pin8)

Power Fail – (SK3 – Pin5)

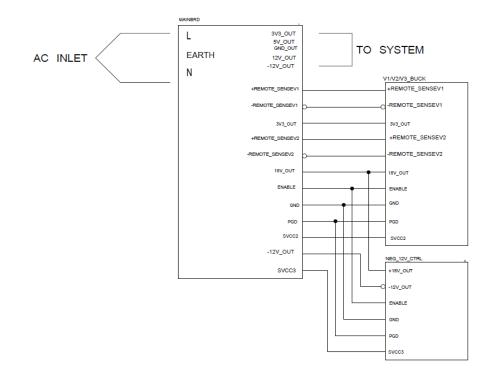
Power fail signal is an active low TTL signal capable of sinking 10ma maximum at 0.5VDC. This output is pulled-up to an internal 5V source and is common referenced. It goes high 100-500ms after the V1 output is in regulation.




Power Fail signal output equivalent circuit



### **APPLICATION NOTES**


### **Output Ripple and Noise Measurement**

The setup outlined in the diagram below has been used for output voltage ripple and noise measurements on the LPQ200-M series. When measuring output ripple and noise, a scope jack in parallel with a 0.1uF ceramic chip capacitor, and a 10 uF aluminum electrolytic capacitor should be used. Oscilloscope should be set to 20 MHz bandwidth for this measurement.



### **Block Diagram**

Below is the block diagram of the LPQ200-M series power supply.





# **RECORD OF REVISION AND CHANGES**

| Issue | Date       | Description             | Originators |
|-------|------------|-------------------------|-------------|
| 1.0   | 06.17.2014 | First Issue             | K. Wang     |
| 1.1   | 06.18.2020 | Update 60950 to 62368-1 | K. Wang     |





### ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

#### PRECISION | POWER | PERFORMANCE

visit advancedenergy.com.

powersale@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832

Advanced Energy

For international contact information,

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.