

AEE15W-M Series

15 Watts

DC/DC Converter

Total Power:	15 Watts
Input Voltage:	9 to 18 Vdc
	18 to 36 Vdc
	36 to 75 Vdc
# of Outputs:	Single, Dual

Special Features

- 4200 VAC reinforced insulation
- Insulation rated for 300 Vrms working voltage
- Medical safety meets 2xMOPP per 3rd Edition of IEC/EN60601-1&ANSI/AAMI ES60601-1 with CE Marking
- Wide 2:1 input voltage range
- · Fully regulated output voltage
- No min. load requirement
- Overload/Voltage and Short Circuit
 Protection
- Low leakage current <5 µA
- Operating temperature range –40 °C to +85 °C (with derating)
- Input filter meets EN55011, Class A and FCC, Level A
- Medical EMC Standard meets 4th Edition of EMI EN55011 and EMS EN60601-1-2
- 2"x 1" plastic package
- 3 Years product warranty

Safety

EN/IEC60601-1 3rd Edition, ANSI/AAMI ES60601-1 2 *MOPP CE Mark

Product Descriptions

The AEE15W-M series is the new range of high performance DC-DC converter with a reinforced insulation system. I/O- isolation voltage is specified for 4200VACrms. The product comes in a compact 2"x1" industry standard package. All models provide wide 2:1 input voltage range and fully regulated output voltage regulation.

The AEE15W-M series DC/DC converters offer an economical solution for demanding applications in medical instrumentation requesting a certified supplementary or reinforced insulation system to comply with the latest medical safety standards.

Applications

Distributed power architectures

- Workstations
- Computer equipment
- Communications equipment
- Medical equipment

Model Numbers

Model	Input Voltage	Output Voltage	Maximum Load	Efficiency
AEE03A12-M	9 - 18Vdc	5Vdc	3A	86%
AEE01B12-M	9 - 18Vdc	12Vdc	1.25A	89%
AEE01C12-M	9 - 18Vdc	15Vdc	1A	88%
AEE01H12-M	9 - 18Vdc	24Vdc	0.625A	88%
AEE01BB12-M	9 - 18Vdc	\pm 12Vdc	±0.625A	88%
AEE01CC12-M	9 - 18Vdc	\pm 15Vdc	±0.5A	89%
AEE03A24-M	18 - 36Vdc	5Vdc	3A	88%
AEE01B24-M	18 - 36Vdc	12Vdc	1.25A	89%
AEE01C24-M	18 - 36Vdc	15Vdc	1A	89%
AEE01H24-M	18 - 36Vdc	24Vdc	0.625A	90%
AEE01BB24-M	18 - 36Vdc	\pm 12Vdc	±0.625A	90%
AEE01CC24-M	18 - 36Vdc	\pm 15Vdc	±0.5A	89%
AEE03A48-M	36 - 75Vdc	5Vdc	3A	88%
AEE01B48-M	36 - 75Vdc	12Vdc	1.25A	88%
AEE01C48-M	36 - 75Vdc	15Vdc	1A	90%
AEE01H48-M	36 - 75Vdc	24Vdc	0.625A	89%
AEE01BB48-M	36 - 75Vdc	\pm 12Vdc	±0.625A	89%
AEE01CC48-M	36 - 75Vdc	\pm 15Vdc	±0.5A	88%

Options

Page 3

Electrical Specifications

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Surge Voltage 100mSec. max	12V Input Models 24V Input Models 48V Input Models	V _{IN,DC}	-0.7 -0.7 -0.7	- - -	25 50 100	Vdc Vdc Vdc
Maximum Output Power	All Models	P _{O,max}	-	-	15	W
Isolation Voltage Input to Output (60 seconds)	All Models		4200	-	-	Vac
Isolation Resistance (500Vdc)	All Models		10	-	-	Gohm
Isolation Capacitance (100KHz,1V)	All Models		-	-	80	pF
Thermal Impedance	Natural Convection		13	-	-	°C/W
Operating Ambient Temperature Range	Natural Convection		-40		+801	°C
Operating Case Temperature	All Models	T _{CASE}	-	-	+95	°C
Storage Temperature	All Models	T _{STG}	-50		+125	°C
Humidity (non-condensing) Operating Non-operating	All Models			-	95 95	%
MTBF	MIL-HDBK- 217F@25 ^o C, Ground Benign		1000000	-	-	Hours

Note 1 – With Derating

Input Specifications

Table 2. Input Specifications:

Parameter		Condition	Symbol	Min	Nom	Мах	Unit
Operating Input Voltage, DC	12V Input Models 24V Input Models 48V Input Models	All	V _{IN,DC}	9 18 36	12 24 48	18 36 75	Vdc
Start-Up Threshold Voltage	12V Input Models 24V Input Models 48V Input Models	All	V _{IN,ON}	- - -	- - -	9 18 36	Vdc
Under Voltage Lockout	12V Input Models 24V Input Models 48V Input Models	All	V _{IN,OFF}	- -	7.5 15 33	- -	Vdc
Input reflected ripple current	12V Input Models 24V Input Models 48V Input Models	0 to 500KHz, Lin=4.7μH Cin=220uF, ESR< 1.0Ω at 100 KHz	I _{IN,ripple}	- - -	100 50 30	- - -	mA
Input Current	AEE03A12-M AEE01B12-M AEE01C12-M AEE01BB12-M AEE01BB12-M AEE01CC12-M AEE03A24-M AEE01B24-M AEE01C24-M AEE01H24-M AEE01BB24-M AEE01CC24-M AEE01B48-M AEE01C48-M AEE01B48-M AEE01B48-M AEE01B48-M	V _{IN,DC} =V _{IN,nom} I _O =I _{O,max}	I _{IN,max_load}		1453 1404 1420 1420 1420 1420 1404 710 702 702 694 694 702 355 355 355 355 347 351 351 355		mA
No Load Input Current $(V_0 \text{ On}, I_0 = 0\text{A})$	12V Input Models 24V Input Models 48V Input Models	V _{IN,DC} =V _{IN,nom}	I _{IN,no_load}	- - -	20 15 10	- - -	mA

-

Input Specifications

Parameter		Condition	Symbol	Min	Nom	Мах	Unit
Efficiency @Max. Load	AEE03A12-M AEE01B12-M AEE01C12-M AEE01BB12-M AEE01BB12-M AEE01CC12-M AEE03A24-M AEE01B24-M AEE01B24-M AEE01H24-M AEE01BB24-M AEE01BB24-M AEE01BB24-M AEE01B48-M AEE01B48-M AEE01B48-M AEE01BB48-M AEE01BB48-M	V _{IN,DC} =V _{IN,nom} I _O =I _{O,max} T _A =25 ^o C	η		86 89 88 88 89 89 89 90 90 89 88 88 88 88 88 88 88 88 88 88 88 88		%
Leakage Current	All Models	V _{IN,AC} =240Vac f _{IN} =60Hz	I _{IN,Leakage}	-	-	5	μA
Internal Filter Type		All		Int	ernal Pi Ty	pe	

Table 2. Input Specifications con't:

Output Specifications

Table 3. Output Specifications:

Parameter		Condition	Symbol	Min	Nom	Max	Unit
Output Voltage Set-Point	AEE03A12-M AEE01B12-M AEE01C12-M AEE01BB12-M AEE01BB12-M AEE01CC12-M AEE03A24-M AEE01B24-M AEE01C24-M AEE01H24-M AEE01BB24-M AEE01BB24-M AEE01BB24-M AEE01BB48-M AEE01BB48-M AEE01BB48-M AEE01BB48-M	V _{IN,DC} =V _{IN,nom} I _O =I _{O,max} T _A =25 ^o C	Vo	$\begin{array}{c} 4.95\\ 11.88\\ 14.85\\ 23.76\\ \pm 11.88\\ \pm 14.85\\ 4.95\\ 11.88\\ 14.85\\ 23.76\\ \pm 11.88\\ \pm 14.85\\ 4.95\\ 11.88\\ 14.85\\ 23.76\\ \pm 11.88\\ 14.85\\ 23.76\\ \pm 11.88\\ \pm 14.85\end{array}$	$5 \\ 12 \\ 15 \\ 24 \\ \pm 12 \\ 5 \\ 12 \\ 15 \\ 24 \\ \pm 15 \\ 5 \\ 12 \\ \pm 15 \\ 24 \\ \pm 15 \\ 24 \\ \pm 12 \\ \pm 15 \\ 24 \\ \pm 15 \\ 24 \\ \pm 15 \\ 24 \\ \pm 15 \\ 5 \\ 24 \\ \pm 15 \\ \pm$	$\begin{array}{c} 5.05\\ 12.12\\ 15.15\\ 24.24\\ \pm 12.12\\ \pm 15.15\\ 5.05\\ 12.12\\ 15.15\\ 24.24\\ \pm 12.12\\ \pm 15.15\\ 5.05\\ 12.12\\ 15.15\\ 24.24\\ \pm 12.12\\ \pm 12.12\\ \pm 15.15\end{array}$	Vdc
Output Voltage Balance	Dual Output, Balanced Loads	All	±%V _O	-	-	2.0	%
Output Current	AEE03A12-M AEE01B12-M AEE01C12-M AEE01BB12-M AEE01BB12-M AEE01CC12-M AEE03A24-M AEE01B24-M AEE01H24-M AEE01BB24-M AEE01BB24-M AEE01BB24-M AEE01B48-M AEE01C48-M AEE01BB48-M AEE01BB48-M AEE01CC48-M	Natural Convection	I _O	- - - - - - - - - - - - - - - - - - -		$\begin{array}{c} 3\\ 1.25\\ 1\\ 0.625\\ \pm 0.625\\ \pm 0.5\\ 3\\ 1.25\\ 1\\ 0.625\\ \pm 0.625\\ \pm 0.5\\ 3\\ 1.25\\ 1\\ 0.625\\ \pm 0.625\\ \pm 0.5\end{array}$	A

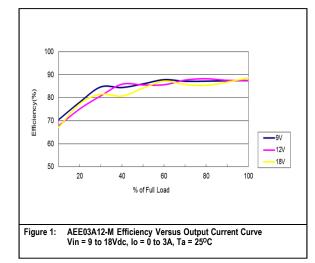
-

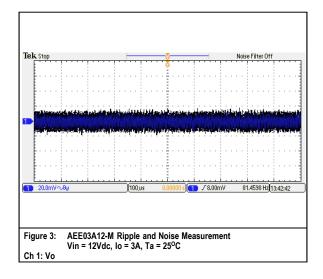
Output Specifications

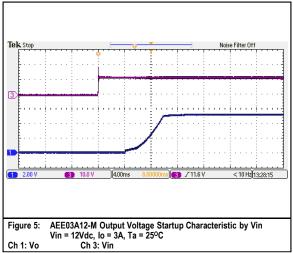
Table 3. Output Specifications	con't:
--------------------------------	--------

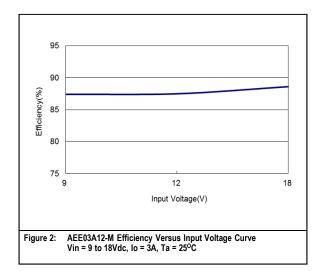
Parameter		Condition	Symbol	Min	Nom	Max	Unit
V _O Load Capacitance	AEE03A12-M AEE01B12-M AEE01C12-M AEE01BB12-M AEE01BB12-M AEE01CC12-M AEE03A24-M AEE01B24-M AEE01C24-M AEE01BB24-M AEE01BB24-M AEE01BB24-M AEE01BB48-M AEE01B48-M AEE01BB48-M AEE01BB48-M	All	Co	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 5100\\ 870\\ 560\\ 220\\ 440^1\\ 280^1\\ 5100\\ 870\\ 560\\ 220\\ 440^1\\ 280^1\\ 5100\\ 870\\ 560\\ 220\\ 440^1\\ 280^1\\ 280^1\end{array}$	uF
Start Up Time (Power On)	All Models	V _{IN,DC} =V _{IN,nom} I _O =I _{O,max} Resistive Load	T _{Turn-On}	-	-	30	mSec
Line Regulation	All Models	$V_{IN,DC} = V_{IN,min}$ to $V_{IN,max}$ $I_O = I_{O,max}$	±%V _O	-	-	0.5	%
Load Regulation	Single Output	l l tol	+0/ \/	-	-	0.5	%
	Dual Output	$I_{O}=I_{O,min}$ to $I_{O,max}$	±%V _O	-	-	1.0	70
Switching Frequency	All Models	All	f _{sw}	-	285	-	KHz
V _O Dynamic Response	Peak Deviation Settling Time	25% load change	±%V _O t _s	-	±3 -	±5 300	% uSec
Temperature Coefficient	Temperature Coefficient		%/ ⁰ C	-0.02	-	0.02	%
Output Over Current Pro	Output Over Current Protection ²		%I _{O,max}	-	150	-	%
Output Short Circuit Prot	ection ³	All		Hic	cup Autom	natic Reco	very

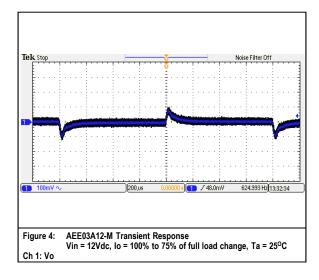
Note 1 - For each output

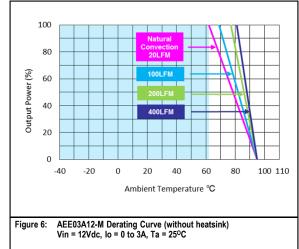

Note 2 - Hiccup Automatic Recovery Note 3 - Hiccup Mode 0.7Hz typ., Automatic Recovery

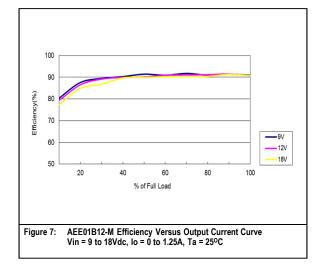

Output Specifications

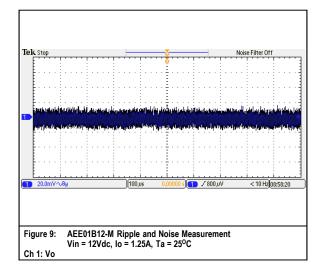

Parameter		Condition	Symbol	Min	Nom	Max	Unit
Output Over Voltage Protection	AEE03A12-M AEE01B12-M AEE01C12-M AEE01H12-M AEE01BB12-M AEE01CC12-M AEE03A24-M AEE01B24-M AEE01C24-M AEE01H24-M AEE01BB24-M AEE01CC24-M AEE01BB24-M AEE01BB24-M AEE01CC48-M AEE01BB48-M AEE01BB48-M AEE01CC48-M	All			$\begin{array}{c} 6.2 \\ 15 \\ 18 \\ 27 \\ \pm 15 \\ \pm 18 \\ 6.2 \\ 15 \\ 18 \\ 27 \\ \pm 15 \\ \pm 18 \\ 6.2 \\ 15 \\ 18 \\ 27 \\ \pm 15 \\ 18 \\ 27 \\ \pm 18 \\ 215 \\ \pm 18 \end{array}$		Vdc
Output Ripple, pk-pk	AEE03A12-M AEE03A24-M AEE03A48-M AEE01B12-M AEE01C12-M AEE01BB12-M AEE01CC12-M AEE01C24-M AEE01C24-M AEE01BB24-M AEE01C24-M AEE01BB48-M AEE01C24-M AEE01BB48-M AEE01CC48-M AEE01H12-M AEE01H12-M AEE01H124-M AEE01H48-M	Measure with a 4.7uF ceramic capacitor in parallel with a 10uF tantalum capacitor, 0 to 20MHz bandwidth	Vo	- - - - - - - - - - - - - - - - - - -	50 50 50 100 100 100 100 100 100 100 100		mV _{PK-PK}

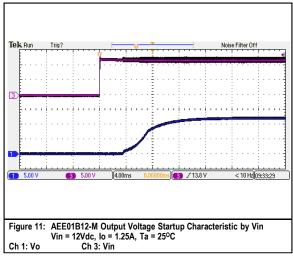

Rev.09.25.17_#1.1 AEE15W-M Series Page 9

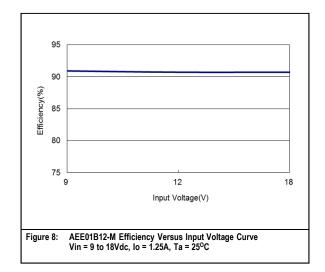

AEE03A12-M Performance Curves

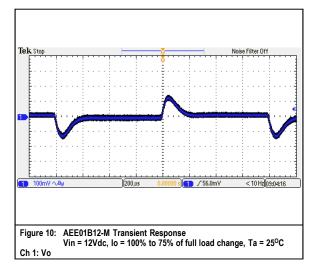


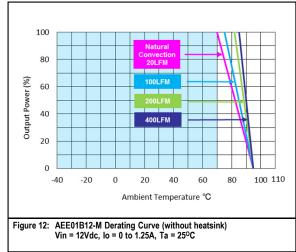


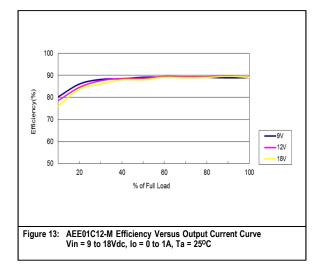


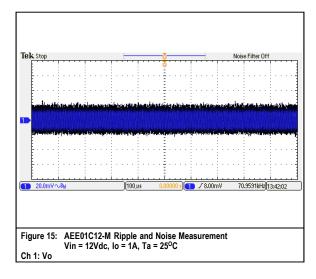


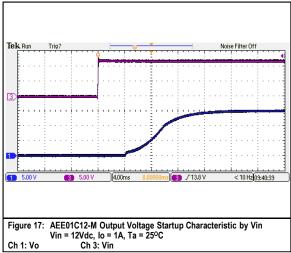

Rev.09.25.17_#1.1 AEE15W-M Series Page 10

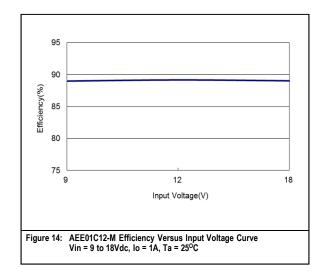

AEE01B12-M Performance Curves

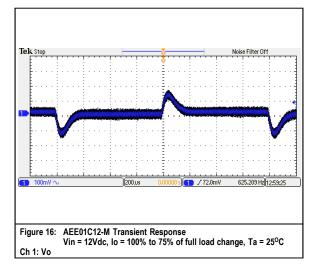


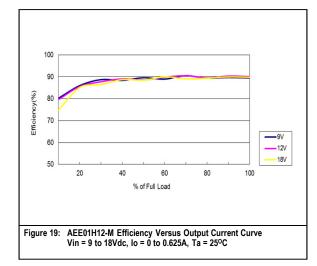


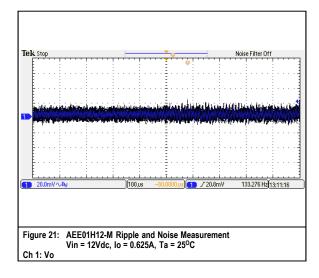


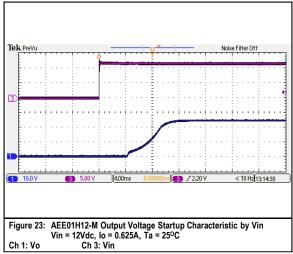


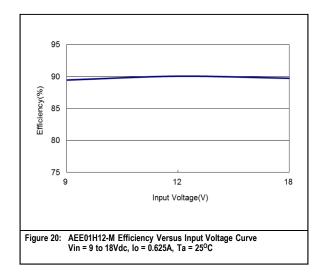

Rev.09.25.17_#1.1 AEE15W-M Series Page 11

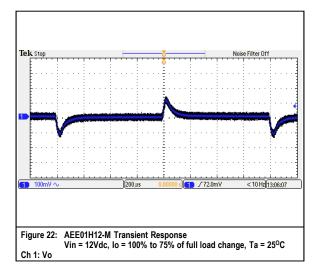

AEE01C12-M Performance Curves

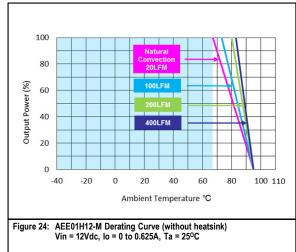


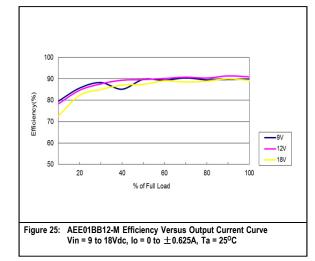


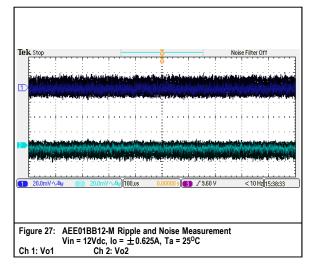


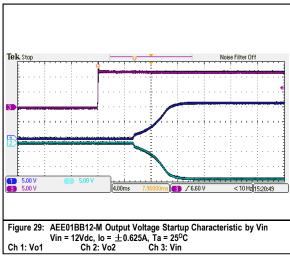

Rev.09.25.17_#1.1 AEE15W-M Series Page 12

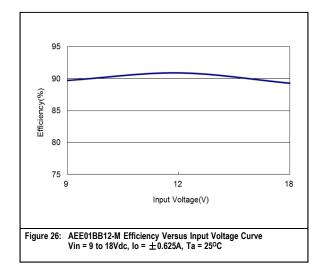

AEE01H12-M Performance Curves

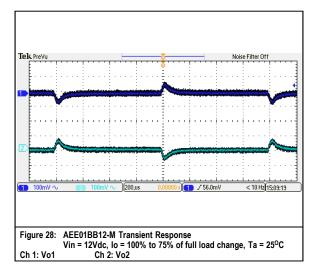


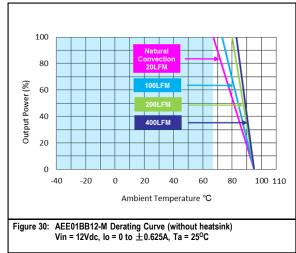


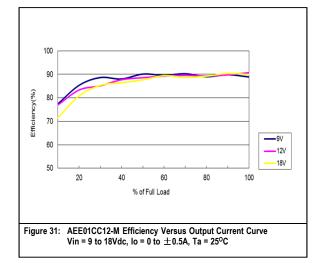


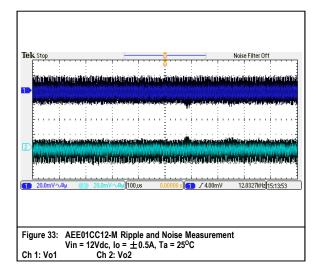


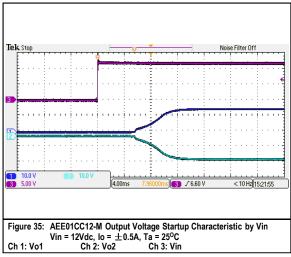

Rev.09.25.17_#1.1 AEE15W-M Series Page 13

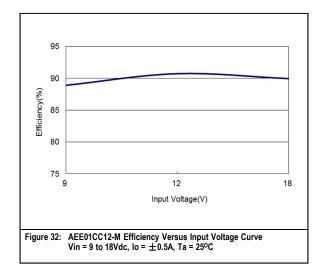

AEE01BB12-M Performance Curves

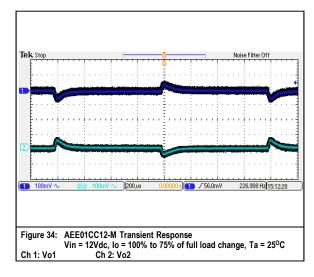


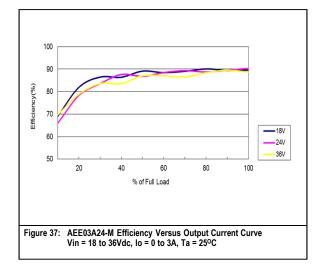


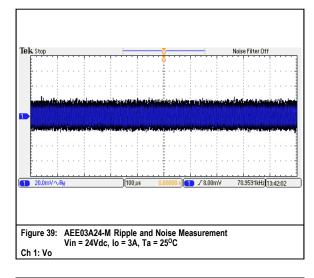


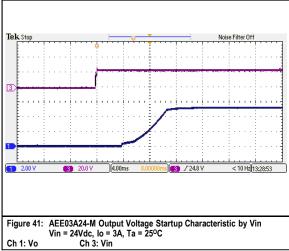


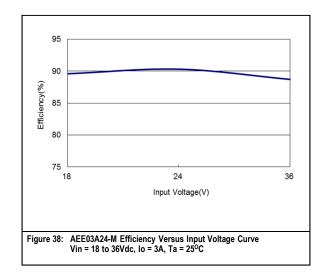

Rev.09.25.17_#1.1 AEE15W-M Series Page 14

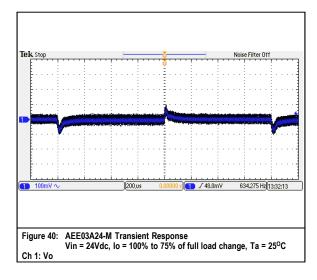

AEE01CC12-M Performance Curves

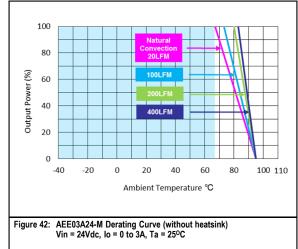


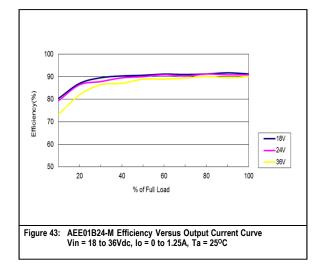


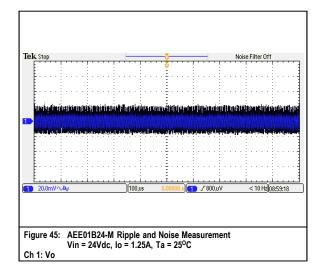


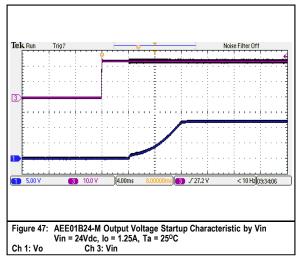

Rev.09.25.17_#1.1 AEE15W-M Series Page 15

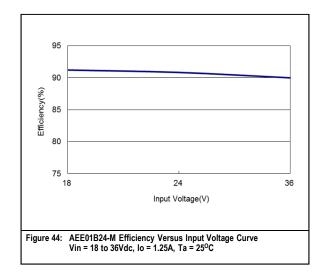

AEE03A24-M Performance Curves

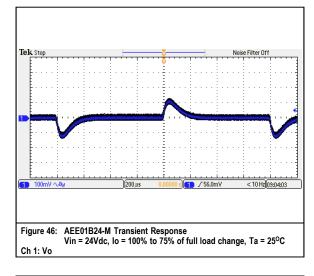


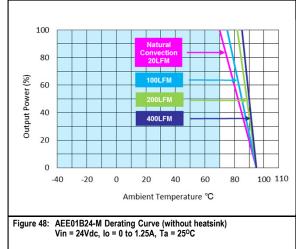


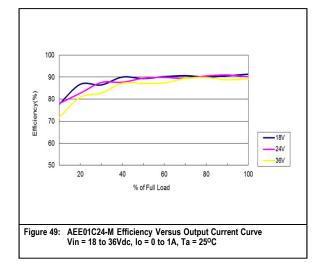


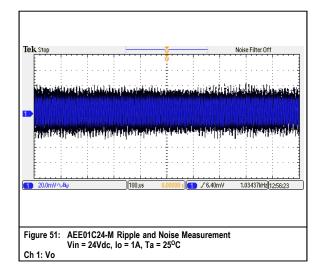


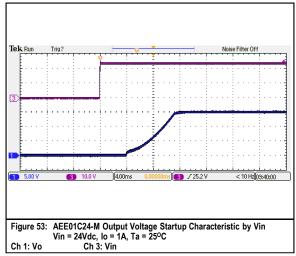

Rev.09.25.17_#1.1 AEE15W-M Series Page 16

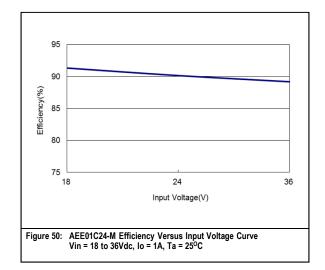

AEE01B24-M Performance Curves

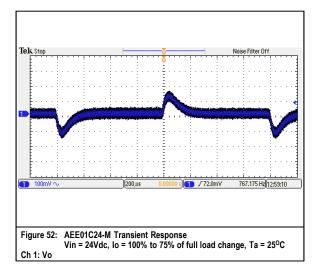


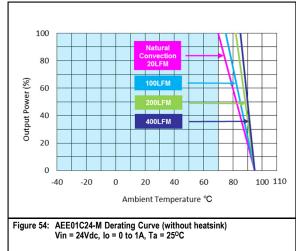


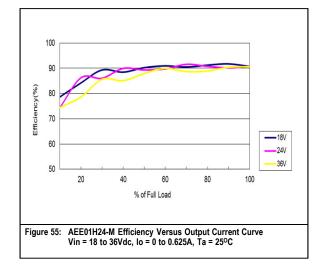


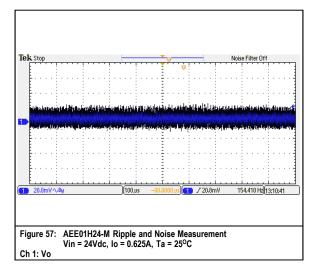


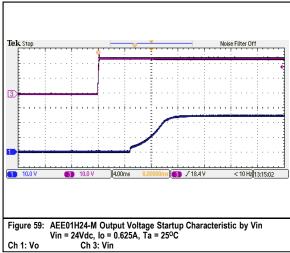

Rev.09.25.17_#1.1 AEE15W-M Series Page 17

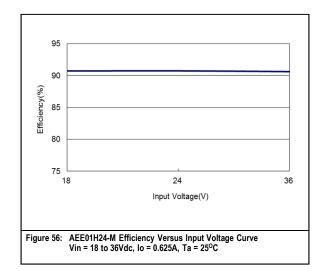

AEE01C24-M Performance Curves

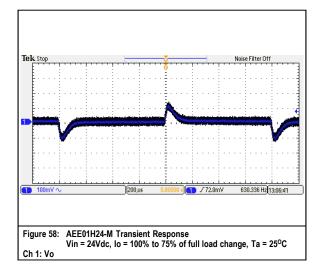


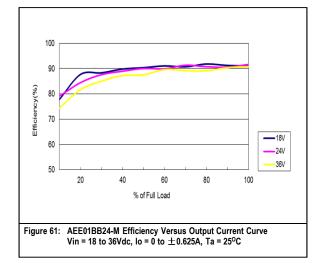




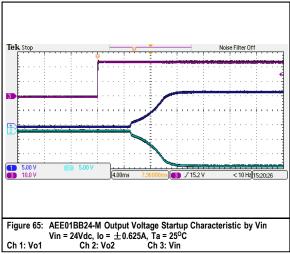


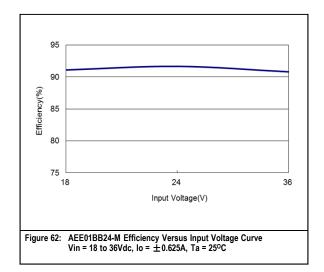

Technical Reference Note

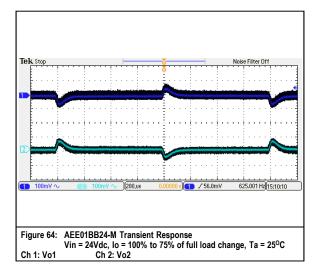

AEE01H24-M Performance Curves

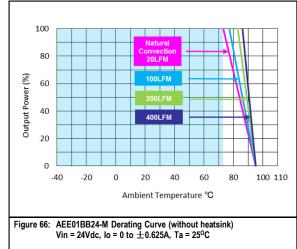


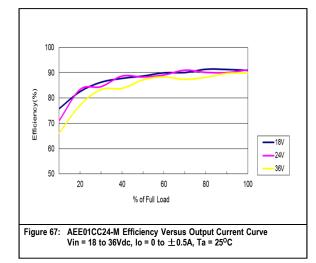


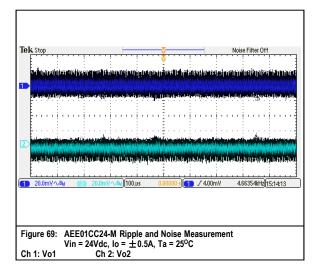


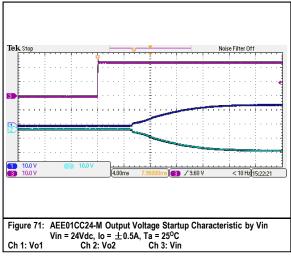

Technical Reference Note

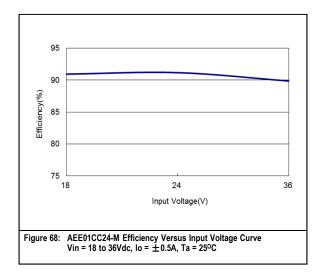

AEE01BB24-M Performance Curves

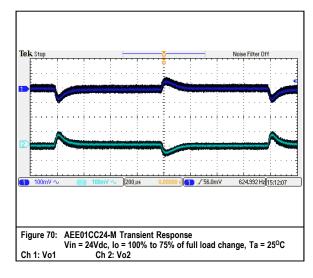


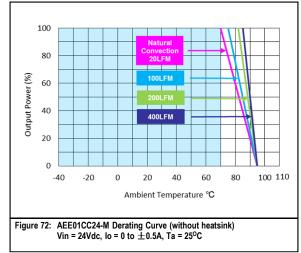


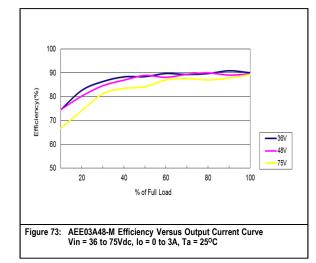


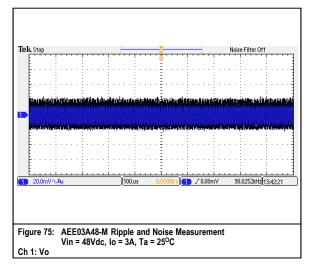


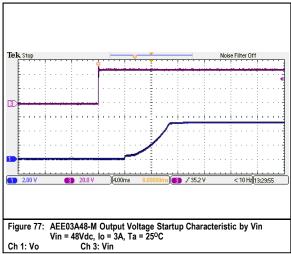

Rev.09.25.17_#1.1 AEE15W-M Series Page 20

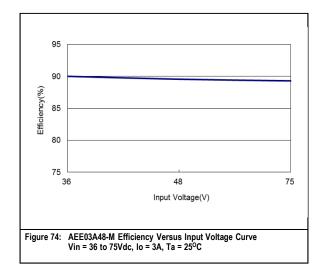

AEE01CC24-M Performance Curves

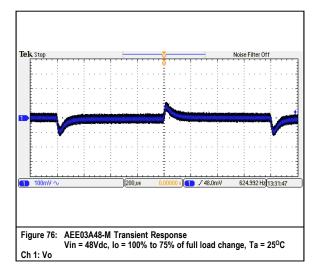


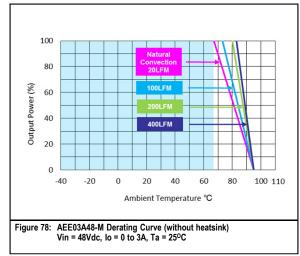


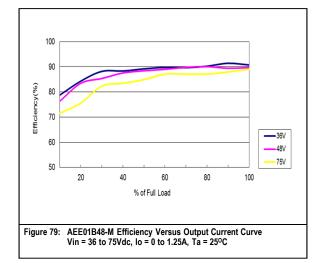


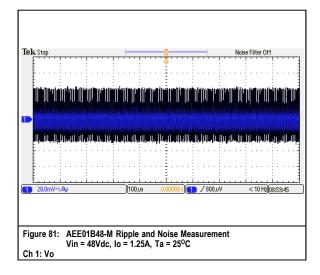


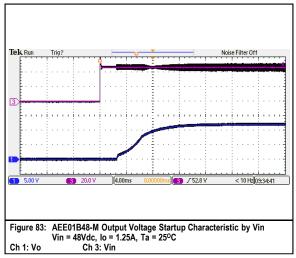

Rev.09.25.17_#1.1 AEE15W-M Series Page 21

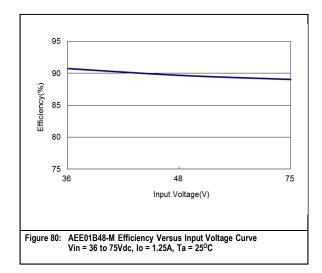

AEE03A48-M Performance Curves

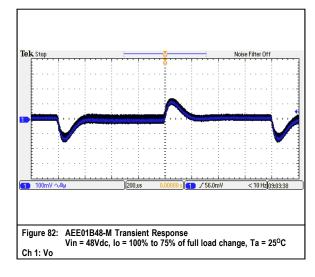


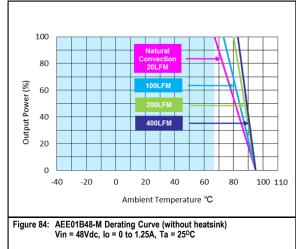


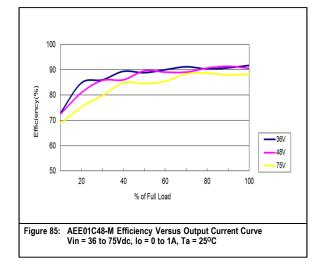


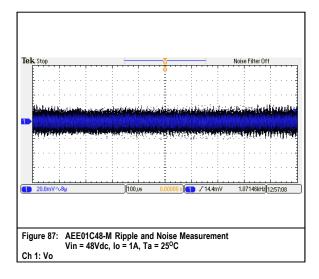


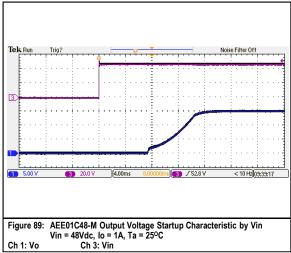

Rev.09.25.17_#1.1 AEE15W-M Series Page 22

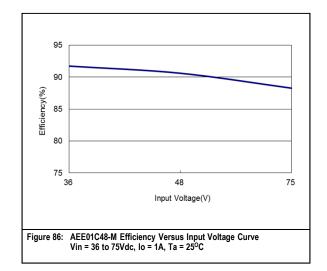

AEE01B48-M Performance Curves

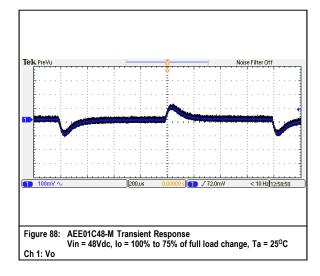


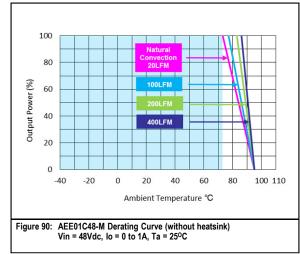


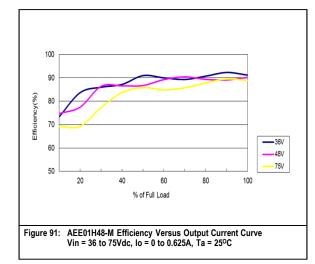


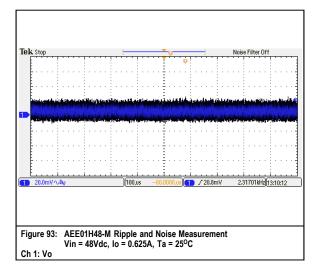


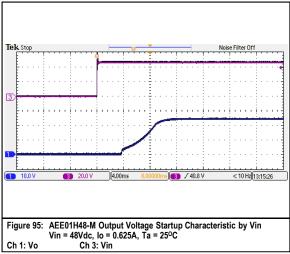

Technical Reference Note

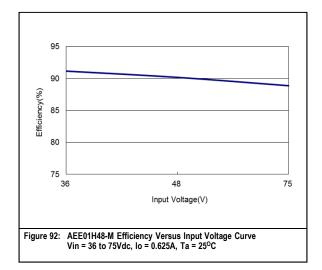

AEE01C48-M Performance Curves

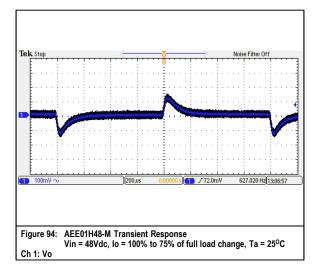


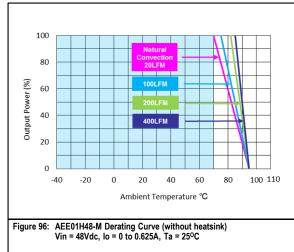


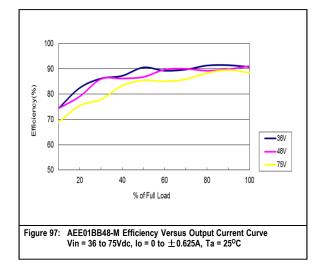


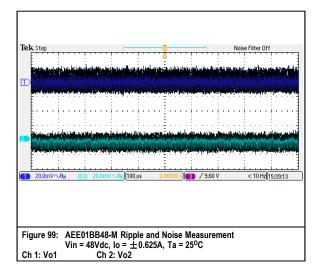


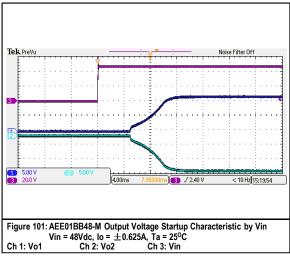

Rev.09.25.17_#1.1 AEE15W-M Series Page 24

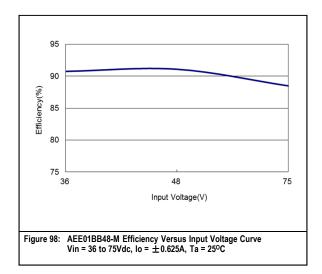

AEE01H48-M Performance Curves

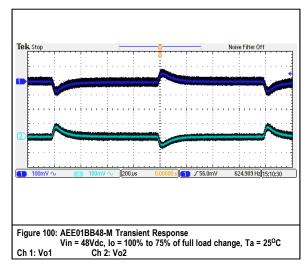


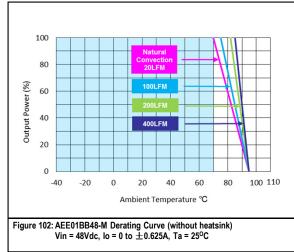


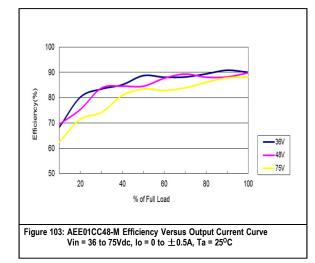


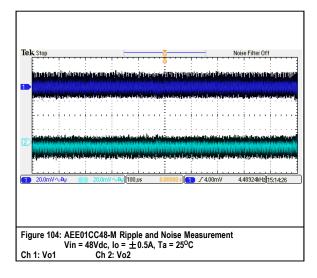


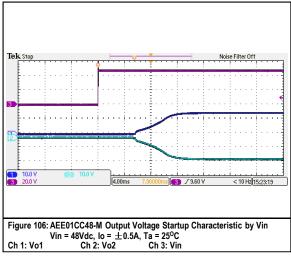


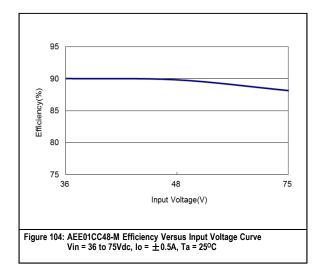

AEE01BB48-M Performance Curves

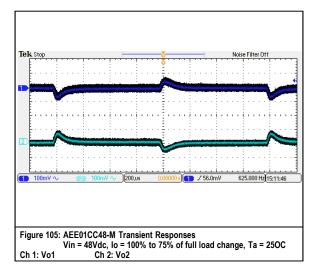


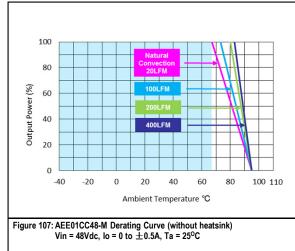


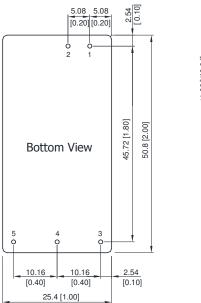





Rev.09.25.17_#1.1 AEE15W-M Series Page 26


AEE01CC48-M Performance Curves





Mechanical Specifications

Mechanical Outlines

Note:

1.All dimensions in mm (inches) 2.Tolerance: X.X \pm 0.5 (X.XX \pm 0.02) X.XX \pm 0.25 (X.XXX \pm 0.01) 3.Pin diameter: 1.0 \pm 0.05 (0.04 \pm 0.002)

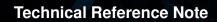
Physical Characteristics

Case Size:	50.8*25.4*12.00mm (2.0*1.0*0.47 inches)
Case Material:	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Pin Material:	Tinned Copper
Weight:	30g

Rev.09.25.17_#1.1 AEE15W-M Series Page 27

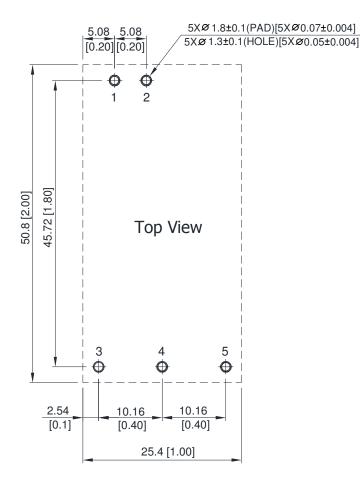
Pin Connections

Single output


Pin [•]	1	—	+Vin

- Pin 2 -Vin
- Pin 3 +Vout
- Pin 4 No Pin
- Pin 5 -Vout

Dual Output


Pin 1	_	+Vin
Pin 2	_	-Vin
Pin 3	_	+Vout
Pin 4	_	Common

Pin 5 – -Vout

Rev.09.25.17_#1.1 AEE15W-M Series Page 28

Recommended Pad Layout

Environmental Specifications

EMC Immunity

AEE15W-M series power supply is designed to meet the following EMC immunity specifications.

Table 4. EMC Specifications:

Parameter		Performance		
EMI	Conduction & Radiation EN55011, FCC part 15		Class A	
	EN60601-1-2, 4 th			
	ESD	EN61000-4-2 Air \pm 15kV, Contact \pm 8kV	Deut Cuiteuie A	
	Radiated immunity	EN61000-4-3 10V/m	Perf. Criteria A	
EMS	Fast transient ¹	EN61000-4-4 ±2KV	Perf. Criteria A	
	Surge ¹	EN61000-4-5 ±1KV	Perf. Criteria A	
	Conducted immunity	EN61000-4-6 10Vrms	Perf. Criteria A	
	PFMF	EN61000-4-8 30A/M	Perf. Criteria A	

Note 1: To meet EN61000-4-4 & EN61000-4-5, an external capacitor across the input pins is required.

Safety Certifications

The AEE15W-M series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

AEE15W-M Series Page 30

Table 5. Safety Certifications for AEE15W-M series power supply system:

Document	Description	
ANSI/AAMI ES60601-1, CAN/CSA-C22.2 No. 60601-1	International and Canada Medical Requirements	
IEC/EN60601-1 3rd Edition 2xMOPP	International and European Medical Requirements	
ANSI/AAMI ES60601-1, 2xMOPP recognition (UL certificate), IEC/EN 60601-13 rd Edition (CB-report)	International and US Medical Requirements	

Operating Temperature

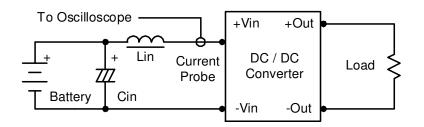
Table 6. Operating Temperature:

Parameter	Model / Condition	Min	Max	Unit	
	AEE01H24-M AEE01BB24-M AEE01C48-M		+73		
Operating Temperature Range	AEE01B12-M AEE01CC12-M AEE01B24-M AEE01CC24-M AEE01H48-M AEE01BB48-M	-40	+70	- °C	
(Natural Convection ¹ , See Derating)	AEE01C12-M AEE01H12-M AEE01BB12-M AEE03A24-M AEE01C24-M AEE03A48-M AEE01B48-M AEE01CC48-M		+67		
	AEE03A12-M		+62	1	
Operating Case Temperature	All	-	+95	°C	
Thermal Impedance (Natural Convection ¹)		13	-	°C/W	
Storage Temperature Range		-50	+125	°C	
Humidity (non-condensing)		-	95	%	
Altitude		-	4000	m	
Cooling	Natural Convection ¹		•		
Lead Temperature (1.5mm from case for 10Sec.)		-	260	°C	

Note1 - The "Natural Convection" is about 20LFM but is not equal to still air (0LFM).

MTBF and Reliability

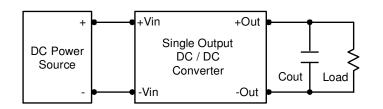
The MTBF of AEE15W-M series of DC/DC converters has been calculated using MIL-HDBK 217F NOTICE2, Operating Temperature 25°C, Ground Benign.

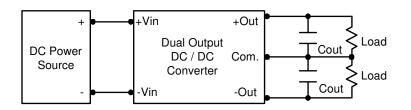

Model	MTBF	Unit
AEE03A12-M	1,428,181	
AEE01B12-M	1,927,407	
AEE01C12-M	2,026,516	
AEE01H12-M	1,780,163	
AEE01BB12-M	1,780,163	
AEE01CC12-M	2,108,738	
AEE03A24-M	1,646,820	
AEE01B24-M	1,975,949	
AEE01C24-M	2,068,481	
AEE01H24-M	2,019,674	Hours
AEE01BB24-M	2,019,674	
AEE01CC24-M	2,134,001	
AEE03A48-M	1,749,638	
AEE01B48-M	1,866,230	
AEE01C48-M	1,953,706	
AEE01H48-M	1,809,937	
AEE01BB48-M	1,809,937	
AEE01CC48-M	2,031,988	

Application Notes

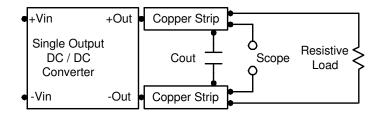
Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7 μ H) and Cin (220 μ F, ESR < 1.0 Ω at 100KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500KHz.




Component Value		Reference	
Lin	4.7µH	4.7μH -	
Cin	220uF (ESR<1.0Ω at 100KHz)	Aluminum Electrolytic Capacitor	

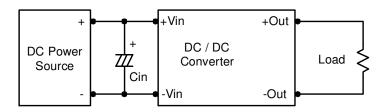
Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7uF capacitors at the output.

Peak-to-Peak Output Noise Measurement Test

Use a 4.7uF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50mm and 75mm from the DC/DC Converter

•	+Vin	+Out	Copper Strip
	Dual Output		Cout - O Scope
	DC / DC	Com.	Copper Strip
	Converter		Cout $\stackrel{\bullet}{\longrightarrow}$ O_{Scope}
•	-Vin	-Out	Copper Strip



Input Source Impedance

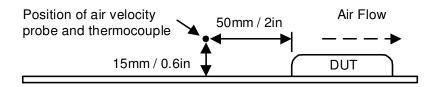
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100KHz) capacitor of a 10uF for the 12V input modules and a 4.7uF for the 24V input modules and a 2.2uF for the 48V input modules.

Output Over Current Protection

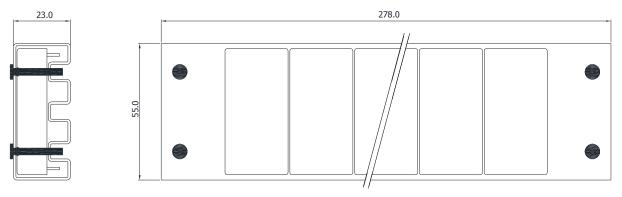
To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.


Output Over Voltage Protection

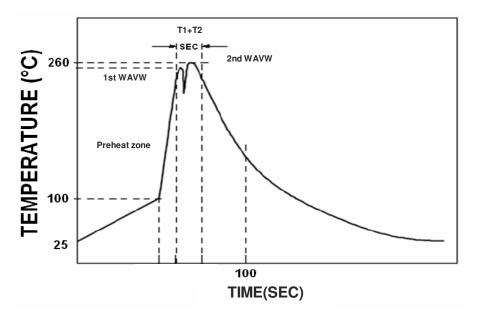
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals.

The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in Table 3.

Thermal Considerations


Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

Maximum Capacitive Load


The AEE15W-M series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the Table 3.

Packaging Information

Soldering and Reflow Considerations

Lead free wave solder profile

Profile Feature	Reference Parameter
Heating rate during preheat	Rise temp speed : 3 ^o C/Sec max.
Final preheat temperature	Preheat temp : 100~130 ^o C
Peak temperature	Peak temp: 250~260 ^o C
Time within peak temperature	Peak time(T1+T2): 4~6 sec

Reference Solder: Sn-Ag-Cu: Sn-Cu: Sn-Ag Hand Welding: Soldering iron: Power 60W Welding Time: 2~4sec Temp.: 380~400°C

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	01.11.2017	First Issue	XF.SUN
1.1	09.25.2017	Update the Efficiency, input current, derating curve, operating temperature, lead profile and safety standard.	XF.SUN

WORLDWIDE OFFICES

Americas

2900 S.Diablo Way Tempe, AZ 85282 USA +1 888 412 7832 Europe (UK) Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX United Kingdom

+44 (0) 1384 842 211

Asia (HK)

14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong +852 2176 3333

www.artesyn.com

For more information: www.artesyn.com/power For support: productsupport.ep@artesyn.com

While every precaution has been taken to ensure accuracy and completeness in this literature, Artesyn Embedded Technologies assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions. Artesyn Embedded Technologies, Artesyn and the Artesyn Embedded Technologies logo are trademarks and service marks of Artesyn Technologies, Inc. All other names and logos referred to are trade names, trademarks, or registered trademarks of their respective owners. © 2014 All rights reserved.