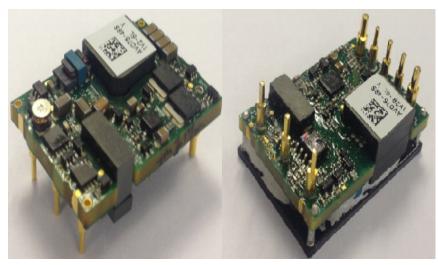
AVD75-48S1V2

30 Watts

Sixteenth-brick Converter


Total Power: 30 Watts **Input Voltage:** 36 to 75 Vdc **# of Outputs:** Single

Special Features

- · Delivers up to 25A output
- Ultra-high efficiency 87% typ. at half load and 84% at full load
- Wide input range: 36V ~ 75V
- · Excellent thermal performance
- · No minimum load requirement
- RoHS 6 compliant
- · Remote control function
- · Remote output sense
- Trim function: 80% ~ 110%
- · Input under voltage lockout
- Output over current protection
- · Output short protection
- · Output over voltage protection
- · Over temperature protection
- · Industry standard sixteenth-brick
- Standard module with base plate or open frame

Safety

EN 62368-1 UL/CSA 60950-1 CE Mark EN55022 UL94, V-0 flammability rating

Product Descriptions

The AVD75-48S1V2 is a next-generation industry single output DC/DC converter with standard sxiteenth-brick form factor and pin configuration. It delivers up to 25A output current with 1.2V output voltage. Ultra-high efficiency of 87% at half load and 84% at full load, excellent thermal performance makes it an ideal choice for use in computing and telecommunication applications and can operate over an ambient temperature range of -40 $^{\circ}$ C $^{\sim}$ +85 $^{\circ}$ C. For most applications, a heat sink is not required.

Applications

Telecom/ Datacom

Model Numbers

Standard	Output Voltage	Structure	Remote ON/OFF logic	RoHS Status
AVD75-48S1V2-6L	1.2Vdc	Open-frame	Negative	R6
AVD75-48S1V2TL	1.2Vdc	Open-frame	Positive	R6
AVD75-48S1V2B-6L	1.2Vdc	Base plate	Negative	R6

Ordering information

AVD75	-	48	S	1V2	Р	В	-	6	L
1		2	3	4	(5)	6		7	8

1)	Model series	AVD: high efficiency sixteenth brick series
2	Input voltage	48: 36V ~ 75V input range, rated input voltage 48V
3	Output number	S: single output
4	Rated output voltage	1V2: 1.2V output
(5)	Remote ON/OFF logic	Default: negative logic; P: positive logic
6	Baseplate	Default: without the baseplate, B:with baseplate
7	Pin length	6: 3.8mm pin length T: SMT
8	RoHS status	L: RoHS, R6

Options

None

Electrical Specifications

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage						
Operating -Continuous	All	V _{IN,DC}	-	-	80	Vdc
Non-operating -100mS	All	* IN,DC	-	-	100	Vdc
Maximum Output Power	All	$P_{O,max}$	-	-	30	W
Isolation Voltage ¹ Input to output			1500	-	-	
Input to baseplate	All		1000	-	-	Vdc
Output to baseplate			1500	-	-	
Ambient Operating Temperature	All	T _A	-40	-	+85	οС
Storage Temperature	All	T _{STG}	-55	-	+125	οС
Voltage at remote ON/OFF pin	All		-0.3	-	+5	Vdc
Humidity (non-condensing)						
Operating	All		-	-	95	%
Non-operating	All		-	-	95	%

Note 1 - Basic insulation, pollution degree 2, 1mA for 60s slew rate of 2000V/10s

Input Specifications

Table 2. Input Specifications:

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, DC	All	$V_{\rm IN,DC}$	36	48	75	Vdc
Turn-on Voltage Threshold	$I_{O} = I_{O,max}$	V _{IN,ON}	31	-	36	Vdc
Turn-off Voltage Threshold	$I_{O} = I_{O,max}$	$V_{IN,OFF}$	30	-	35	Vdc
Lockout Voltage Hysteresis	$I_{O} = I_{O,max}$		1	-	3	V
Maximum Input Current $(I_O = I_{O,max})$	$V_{IN,DC} = 36V_{DC}$	I _{IN,max}	-	-	1.2	А
No-load Input Current			-	0.02	-	А
Standby Input Current	Remote OFF		-	4	7	mA
Recommended Input Fuse	Fast blow external fuse recommended; Figure 21		-	-	5	А
Input current transient rating	Figure 25		-	-	1.5	A²s
Recommended External Input Capacitance	Low ESR capacitor recommended; Figure 21	C _{IN}	100	-	-	uF
Input Reflected Ripple Current	Through 12uH inductor; Figure25		-	-	40	mA
Operating Efficiency	$T_A=25$ °C $I_O = I_{O,max}$ $I_O = 50\%I_{O,max}$ $I_O = 20\%I_{O,max}$	η	- - -	84 87 82	- - -	% % %

Output Specifications

Table 3. Output Specifications:

Parameter		Condition	Symbol	Min	Тур	Max	Unit
Factory Set Voltage		$V_{IN,DC} = 48V_{DC}$ $I_{O}=I_{O,max}$	Vo	1.181	1.2	1.218	Vdc
Total Regulation		Inclusive of sample line, load, temperature & life	V _O	1.142	1.2	1.257	Vdc
Output Voltage Line Reg	ulation	All	%V _o	-	±0.25	±1	%
Output Voltage Load Re	gulation	All	%V _o	-	±0.25	±1	%
Output Voltage Tempera	ture Regulation	All	%V _o	-	-	±0.02	%/ ^O C
Output Voltage Trim Rar	nge	All	Vo	0.96	-	1.32	V
Output Ripple, pk-pk		Measure with a 1uF ceramic capacitor in parallel with a 10uF tantalum capacitor, 0 to 20MHz bandwidth	Vo	-	45	-	mV _{PK-PK}
Output Current		All	Io	0	-	25	Α
Output DC current-limit i	nception ²	All	Io	27	-	38	Α
V _O Load Capacitance ³		All	Co	220	-	10000	uF
V _O Dynamic Response Peak deviation Settling time		25%~50%~25% 25% load change slew rate = 0.1A/us	±V _O T _s	-	-	20 100	mV uSec
	Rise time	$I_{O} = I_{max}$	T _{rise}	-	5	30	mS
Turn-on transient	Turn-on delay time	$I_{O} = I_{max}$	T _{turn-on}	-	-	100	mS
	Output voltage overshoot	I _O = 0	%V _o	-	0	-	%

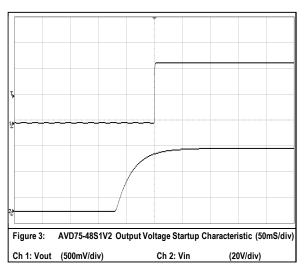
Note 2 - Hiccup: auto-restart when over-current condition is removed.

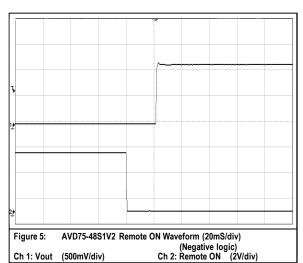
Note 3 - High frequency and low ESR is recommended.

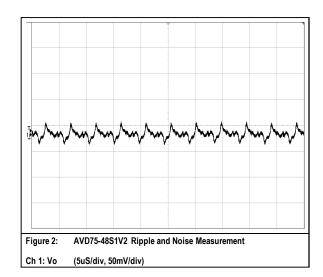
Output Specifications

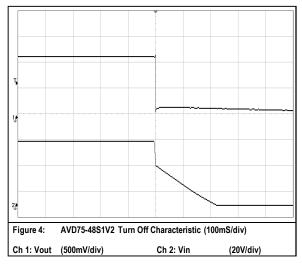
Table 3. Output Specifications, con't:

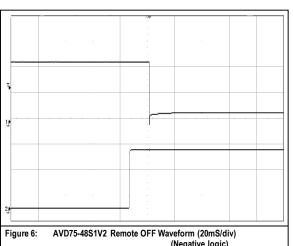

Parameter		Condition	Symbol	Min	Тур	Max	Unit
Switching frequency		All	f _{SW}	-	230	-	KHz
Remote ON/OFF	Off-state voltage	All		-0.3	-	1.2	V
control (positive logic)	On-state voltage	All		3.5	-	5	V
Remote ON/OFF	Off-state voltage	All		3.5	-	5	V
control (negative logic)	On-state voltage	All		-0.3	-	1.2	V
Output over-voltage prot	ection ⁴	All	Vo	1.44	-	1.9	V
Output over-temperature	Output over-temperature shutdown ⁵		Т	-	118	-	οС
Over-temperature hysteresis		All	Т	-	10	-	οС
MTBF		300LFM, 40°C Ta Normal Input/ Rated Output@80%load		2.0	-	-	10 ⁶ h

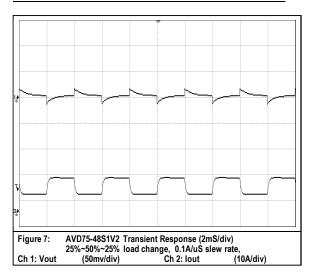

Note 4 - Hiccup: auto-restart when over-voltage condition is removed.


Note 5 - Auto recovery; over-temperature protect(OTP) test point: see Figure 10.




AVD75-48S1V2 Performance Curves





(Negative logic) Ch 2: Remote OFF (2V/div) Ch 1: Vout (500mV/div)

AVD75-48S1V2 Performance Curves

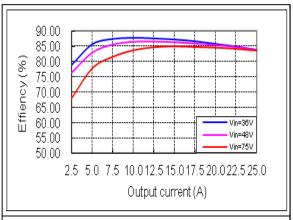


Figure 9: AVD75-48S1V2 Efficiency Curves @ 25 degC

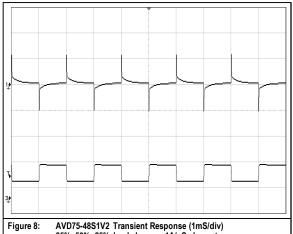
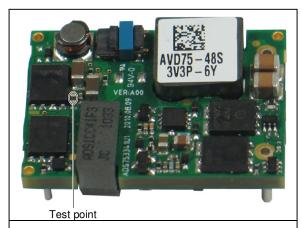
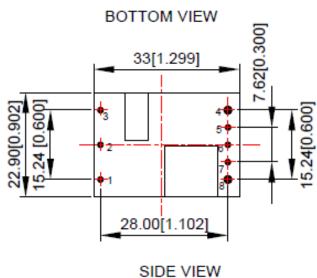
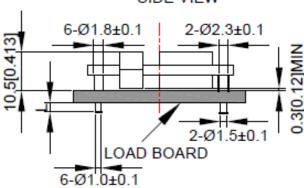


Figure 8: AVD75-48S1V2 Transient Response (1mS/div) 25%~50%~25% load change, 1A/uS slew rate, Ch 1: Vout (50mv/div) Ch 2: lout (10A/div)




Figure 10: OTP test point



Mechanical Specifications

Mechanical Outlines - Open Frame Module

AVD75-48S1V2

UNIT: mm[inch] BOTTOM VIEW: pin on upside

TOLERANCE: X.Xmm±0.5mm[X.XX in.±0.02in.] X.XXmm±0.25mm[X.XXX in.±0.01in.]

Open Frame Module

Figure 11 Mechanical diagram

Technical Reference Note

Rev.06.19.20_#1.3 AVD75-48S1V2 Page 10

Pin Length Option

Device code suffix	L
-4	4.8 mm ± 0.2 mm
-6	3.8 mm ±0.2 mm
-8	2.8mm \pm 0.2 mm
None	5.8 mm ±0.2 mm

Pin Designations

Pin No	Name	Function
1	Vin+	Positive input voltage
2	Remote On/Off	Remote control
3	Vin-	Negative input voltage
4	Vo-	Negative output voltage
5	S-	Negative remote sense
6	Trim	Output voltage trim
7	S+	Positive remote sense
8	Vo+	Positive output voltage

Environmental Specifications

EMC Immunity

AVD75-48S1V2 power supply is designed to meet the following EMC immunity specifications:

Table 4. Environmental Specifications:

Document	Description	Criteria
EN55022, Class A Limits	Conducted and Radiated EMI Limits, DC input port	
IEC/EN 61000-4-2, Level 3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Immunity to Electrostatic Discharge. Enclosure Port	В
IEC/EN 61000-4-4, Level 3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Immunity to Electrical Fast Transient. DC input port.	В
IEC/EN 61000-4-5,	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Immunity to Surges - 600V common mode and 600V differential mode for DC port	В
IEC/EN 61000-4-6, Level 2	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Immunity to Continuous Conducted Interference. DC input port	А
EN61000-4-29	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Immunity to Voltage Dips and Short interruptions and Voltage Variations. DC input port	

Criterion A: Normal performance during and after test.

Criterion B: For EFT and surges, low-voltage protection or reset is not allowed. Temporary output voltage fluctuation ceases after disturbances ceases, and from which the EUT recovers its normal performance automatically. For Dips and ESD, output voltage fluctuation or reset is allowed during the test, but recovers to its normal performance automatically after the disturbance ceases.

EMC Test Conditions

See Figure 18.

Technical Reference Note

Rev.06.19.20_#1.3 AVD75-48S1V2 Page 12

Safety Certifications

The AVD75-48S1V2 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 5. Safety Certifications for AVD75-48S1V2 power supply system

Document	File#	Description
UL/CSA 60950-1		US and Canada Requirements
EN62368-1		European Requirements
CE		CE Marking

Operating Temperature

The AVD75-48S1V2-6L series power supplies will start and operate within stated specifications at an ambient temperature from -40 °C to 85 °C under all load conditions. The storage temperature is -55 °C to 125 °C.

<u>Thermal Considerations – Open-frame module</u>

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling of the DC/DC converter can be verified by measuring the temperature at the test point as shown in the Figure 12 and Figure 13. The temperature at this point should not exceed the max values in the table 7.

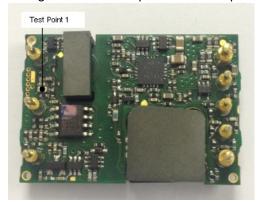


Figure 12 Temperature test point(Bottom)

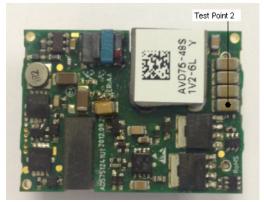
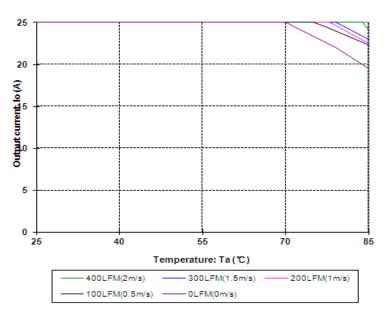



Figure 13 Temperature test point(Top)

Table 7. Temperature limit of the test point

Test Point	Temperature Limit
Test point 1	109 °C
Test point 2	117 °C

For a typical application, figure 14 shows the derating of output current vs. ambient air temperature at different air velocity.

_____Figure 14 Output power derating, 48Vin, air flowing across the converter from Vin- to Vin+

Operating Temperature

The AVD75-48S1V2B-6L series power supplies will start and operate within stated specifications at an ambient temperature from -40 $^{\circ}$ C to 85 $^{\circ}$ C under all load conditions. The storage temperature is -55 $^{\circ}$ C to 125 $^{\circ}$ C.

<u>Thermal Considerations – Open-frame module</u>

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling of the DC/DC converter can be verified by measuring the temperature at the test point as shown in the Figure 15 and Figure 16. The temperature at this point should not exceed the max values in the table 7.



Figure 15 Temperature test point(Bottom)

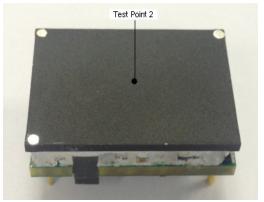


Figure 16 Temperature test point(Top)

Table 7. Temperature limit of the test point

Test Point	Temperature Limit
Test point 1	110 °C
Test point 2	111 °C

For a typical application, figure 17 shows the derating of output current vs. ambient air temperature at different air velocity.

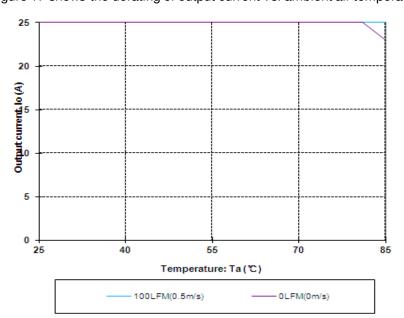


Figure 17 Output power derating, 48Vin, air flowing across the converter from Vin- to Vin+

Technical Reference Note

Rev.06.19.20_#1.3 AVD75-48S1V2 Page 15

Qualification Testing

Parameter	Unit (pcs)	Test condition	
Halt test	4-5	$T_{a,min}$ -10 °C to $Ta,max+10$ °C, 5 °C step, $Vin = min to max, 0 \sim 105\% load$	
Vibration	3	Frequency range: 5Hz \sim 20Hz, 20Hz \sim 200Hz, A.S.D: 1.0m ² /s ³ , -3db/oct, ax of vibration: X/Y/Z, Time: 30min/axes	
Mechanical Shock	3	30g, 6ms, 3axes, 6directions, 3time/direction	
Thermal Shock	3	-40 °C to 100 °C, unit temperature 20cycles	
Thermal Cycling	3	-40 °C to 85 °C, temperature change rate: 1°C/min, cycles: 2cycles	
Humidity	3	40 °C, 95%RH, 48h	
Solder Ability	15	IPC J-STD-002C-2007	

Application Notes

Typical Application

Below is the typical application of the AVD75-48S1V2 power supply.

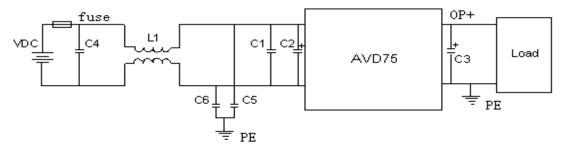


Figure 18 Typical application

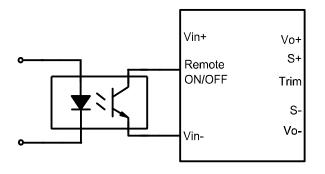
Recommended input fuse:Littel fuse 0453005.MR 5A

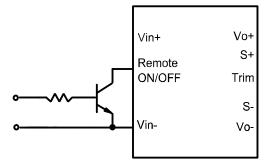
C4: SMD ceramic-100V-1000nF-X7R-1210

C1: SMDceramic-100V-100nF-±10%-X7R-1206

C2: $100\mu F/100V$ electrolytic capacitor, high frequency and low ESR

C3: 470µF/100V electrolytic capacitor, high frequency and low ESR


C5, C6: SMD ceramic- 22nF/1000V/X7R-1210


L1: $1320 uH - \pm 25\% - 4A - R5K - 21 \times 21 \times 12.5 mm$

Remote ON/OFF

Negative remote ON/OFF logic is available in AVD75-48S1V2. The logic is CMOS and TTL compatible. The voltage between pin Remote ON/OFF and pin Vin- must not exceed the range listed in table "Feature characteristics" to ensure proper operation. The external Remote ON/OFF circuit is highly recommended as shown in figure 19.

Isolated remote ON/OFF circuit

Non-isolated remote ON/OFF circuit

Figure 19 External Remote ON/OFF circuit

Trim Characteristics

Connecting an external resistor between Trim pin and Vo- pin will decrease the output voltage. While connecting it between Trim and Vo+ will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output voltage.

$$R_{adj-down} = (\frac{511}{\Delta\%} - 10.22)K\Omega$$

$$R_{adj-up} = (\frac{5.11 \times V_{out} \times \left(100 + \Delta\%\right)}{V_{ref} \times \Delta\%} - \frac{511}{\Delta\%} - 10.22)K\Omega$$

 $R_{adj-down}$: Value of external adjustment resistor which shall be connected between Trim and –Sense for trimming down.

 $\Delta\%$: Output voltage change rate against nominal output voltage.

 R_{adj-up} : Value of external adjustment resistor which shall be connected between Trim and +Sense for trimming up.

Vout: Nominal output voltage.

$$V_{ref} = 0.6 V$$

When trimming up, the output current should be decreased accordingly so as not to exceed the maximum output power and the minimum input voltage should be increased as shown in below figure.

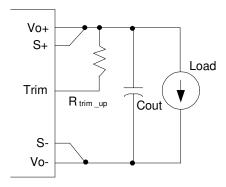


Figure 20 Trim up

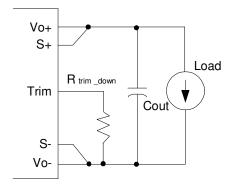


Figure 21 Trim down

Input Ripple & Output Ripple & Noise Test Configuration

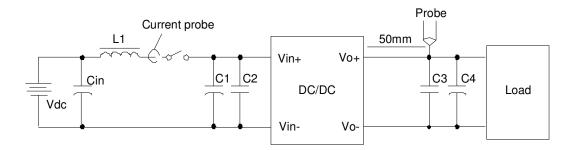


Figure 22 Input ripple & output ripple & noise test configuration

Vdc: DC power supply

L1: 12µH

Cin: 220µF/100V typical

C1: 100µF/100V electrolytic capacitor, high frequency and low ESR

C2: SMD ceramic-100V-100nF- \pm 10%-X7R-1206

C3: SMD ceramic-10V-1 μ F- \pm 10%-X7R-1206

C4: 470µF/10V electrolytic capacitor, high frequency and low ESR

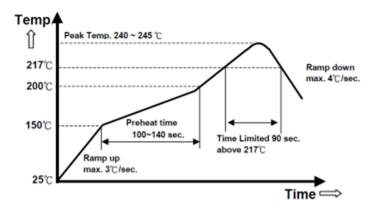
Note: Using a coaxial cable with series 50Ω resistor and $0.68\mu F$ ceramic capacitor or a ground ring of probe to test output ripple & noise is recommended.

Application Notes

Soldering

The product is intended for standard manual or wave soldering.

	Product Requirement	Product Name
R6	Wave soldering	AVD75-48S1V2-6L
		AVD75-48S1V2B-6L


When wave soldering is used, the temperature on pins is specified to maximum 260 °C for maximum 7s.

When soldering by hand, the iron temperature should be maintained at 300 $^{\circ}$ C $^{\sim}$ 380 $^{\circ}$ C and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter. Cleaning of solder joint can be performed with cleaning solvent IPA or simulative.

The below product is intended for standard reflow soldering.

	Product Requirement	Product Name
R6	Reflow soldering	AVD75-48S1V2-6L AVD75-48S1V2TL

When reflow soldering is used, Please refer to following fig for recommended temperature profile parameters..

Hazardous Substances Announcement (RoHS of China R6)

Porto	Hazardous Substances						
Parts	Pb	Hg	Cd	Cr ⁶⁺	PBB	PBDE	
AVD75 -48S1V2-6L	0	0	0	0	0	0	

- o: Means the content of the hazardous substances in all the average quality materials of the part is within the limits specified in SJ/T-11363-2006
- $\sqrt{\ }$: Means the content of the hazardous substances in at least one of the average quality materials of the part is outside the limits specified in SJ/T11363-2006

Artesyn Embedded Technologies has been committed to the design and manufacturing of environment-friendly products. It will reduce and eventually eliminate the hazardous substances in the products through unremitting efforts in research. However, limited by the current technical level, the following parts still contain hazardous substances due to the lack of reliable substitute or mature solution:

- 1. Solders (including high-temperature solder in parts) contain plumbum.
- 2. Glass of electric parts contains plumbum.
- 3. Copper alloy of pins contains plumbum

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	08.29.2014	First Issue	K. Wang
1.1	10.25.2016	Update the mechanical drawing	K. Wang
1.2	12.13.2019	Update soldering information	K. Zou
1.3	06.19.2020	Update EN60950-1 to EN62368	K. Zou

WORLDWIDE OFFICES

Americas

2900 South Diablo Way Suite B100 Tempe, AZ 85282 USA +1 888 412 7832

Europe (UK)

Ground Floor Offices Barberry House, 4 Harbour Buildings Waterfront West, Brierley Hill West Midlands, DY5 1LN, UK +44 (0) 1384 842 211

Asia (HK)

14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong +852 2176 3333

www.artesyn.com

For more information: www.artesyn.com
For support: productsupport.ep@artesyn.com