

ARTESYN ERM 50W SERIES DC/DC Converter

PRODUCT DESCRIPTION

Advanced Energy's Artesyn ERM 50W series is a new generation of high performance, isolated dc-dc converter modules. The product offers 50W in a small, fully encapsulated package. The input voltage ranges comply with European railway standard EN50155. Reinforced insulation and high EMC immunity qualifies these converters also for many demanding applications in railway and other transportation systems.

Advanced circuit topology provides a very high efficiency up to 92% which allows ambient temperatures range up to +85 °C with derating.

AT A GLANCE

Total Power

50 Watts

Input Voltage

72 or 110 Vdc

of Outputs

Single

SPECIAL FEATURES

- Small 57.9 x 36.8 x12.7 mm package CUL/UL 60950-1
- Input Ranges 43-101 Vdc or 66-160 IEC/EN 60950-1 Vdc
- High Efficiency up to 92%
- No Minimum Load Requirement
- Operating Temp. Range -40 °C to +85 °C
- Reinforced Insulation 3000 VACrms
- Under-Voltage Shutdown
- Remote On/Off
- Metal Case with Isolated Baseplate
- Vibration and Thermal Shock to FN61373
- EN60950-1 Safety Standard
- EN50155 (IEC60571)/EN50121-3-2 and EN45545-2 Railway Standard
- EN45545-2 Flammability
- 3 Years Warranty

SAFETY

- IEC/EN 50155
- IFC60571
- CF

TYPICAL APPLICATIONS

Railwav

MODEL NUMBERS

Model	Input Voltage Range	Output Voltage	Minimum Load	Maximum Load
ERM10A72	72(43-101)Vdc	5V	0A	10A
ERM04B72	72 (43 - 101) Vdc	12V	0A	4.17A
ERM03C72	72 (43 - 101) Vdc	15V	0A	3.33A
ERM02H72	72(43-101)Vdc	24V	0A	2.08A
ERM10A110	110 (66 - 160) Vdc	5V	0A	10A
ERM04B110	110 (66 - 160) Vdc	12V	0A	4.17A
ERM03C110	110 (66 - 160) Vdc	15V	0A	3.33A
ERM02H110	110 (66 - 160) Vdc	24V	0A	2.08A

Note - All DC/DC converters should be externally fused at the front end for protection.

Options

Heatsink (-HS)

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings						
Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage: (DC continuous operation)	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	V	43 43 43 66 66 66 66		101 101 101 160 160 160 160	Vdc
Maximum Output Power	All models	P _{O,max}	-	-	50	W
Isolation Resistance 500Vdc	All models		1000	-	-	Mohm
I/O Isolation Capacitance 100KHz, 1V	All models		-	-	3000	pF
Isolation Voltage Input to output Input to case Output to case	All models All models All models		3000 1500 1500	- -	- - -	VACrms Vdc Vdc
Operating Ambient Temperature (With derating, refer to derating curve)	ERM04B72 ERM03C72 ERM03C110 ERM02H72 ERM04B110 ERM02H110 ERM10A72 ERM10A110	T _A	-40	-	+85	°C
Operating Base-plate Temperature Range	All models		-40	-	+105	°C
Storage Temperature	All models	T _{STG}	-50	-	+125	°C
Fire protection test		Complian	ce to EN455	45-2		
Humidity (non-condensing)	All models		5	-	95	%

Input Specifications

Table 2. Input Specific	ations						
Parameter		Condition	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, DC	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	All	V _{in,dc}	43 43 43 66 66 66 66	72 72 72 110 110 110 110	101 101 101 160 160 160 160	Vdc
Start-up Threshold Voltage	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	All	V _{in,on}		- - - - - - -	43 43 43 66 66 66 66 66	Vdc
Under Voltage Lockout	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	All	V _{IN,OFF}		40 40 40 63 63 63 63		Vdc
Input Surge Voltage	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	100ms. Max (with 220uF/200V capacitor)	I _{IN,surge}	-0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	- - - - - -	165 165 165 250 250 250 250 250	Vdc
Maximum Input Current	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Maximum value at Vin= Vin nom; Full Load	l _{IN,max}	-	771 755 754 762 505 500 494 499	- - - - - - -	mA

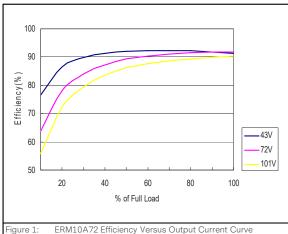
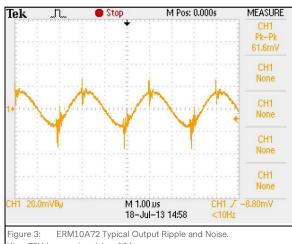
Input Specifications

Table 2. Input Specifications con't							
Parameter		Condition	Symbol	Min	Тур	Max	Unit
No Load Input Current	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Typical value at Vin = Vin nom; No Load	l _{IN,no_} load		50 45 50 40 35 40		mA
Efficiency @Max. Load	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Vin =Vin nom; Full Load; T _A =25 °C	η		90 92 91 90 91 92 91		%
Input Reflected Ripple Current 0 to 500KHz, 4.7µH source impedance			-	35	-	mApk-pk	
Start Up Time			-	0.35	-	S	
Internal Filter Type				In	ternal Pi Filt	er	

Output Specifications

Table 3. Output Specifi	cations						
Parameter		Condition	Symbol	Min	Nom	Max	Unit
Output Voltage Set-Point	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Vin=Vin nom; Full Load; TA=25 ∘C	Vo	4.95 11.88 14.85 23.76 4.95 11.88 14.85 23.76	5 12 15 24 5 12 15 24	5.05 12.12 15.15 24.24 5.05 12.12 15.15 24.24	Vdc
Convection Output Current, continuous	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Convection cooling	I _o			10 4.17 3.33 2.08 10 4.17 3.33 2.08	A
Max. Output Capacitance Load	ERM10A72 ERM04B72 ERM03C72 ERM02H72 ERM10A110 ERM04B110 ERM03C110 ERM02H110	Start up			- - - - - - - - -	17000 2950 1900 740 17000 2950 1900 740	uF
Output Ripple, pk-pk	ERM10A72 ERM04B72 ERM03C72 ERM10A110 ERM04B110 ERM03C110	20MHz bandwidth. Refer to the output specifications or add 4.7uF capacitor if the output specifications	V _o	-	-	100	mVp-p
	ERM02H72 ERM02H110	undefine Cout.	V _o	-	-	150	mVp-p
Load Transient Response	Peak Deviation Settling Time	Measured to within 1% error band 25% Load Step Change	- T _s	-	±3. 250	±5 -	% uSec
Line Regulation		Vin=Min. to Max. @ Full Load		-	-	±0.2	%V _o
Load Regulation		Min. Load to Full Load		-	-	±0.3	%V _o
Output Voltage Adjustme	ent Range		Vo	-10	-	+10	%V _o
Temperature Coefficient		All models		-	-	±0.02	%/ °C
Switching Frequency		All models	f_{SW}	-	320	-	KHz

ERM10A72 Performance Curves

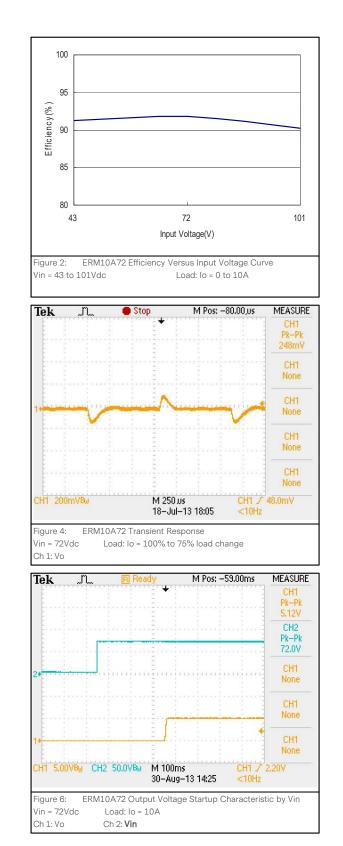
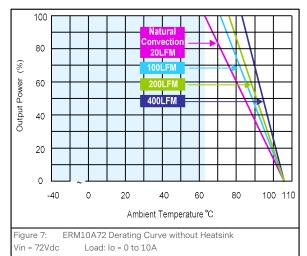
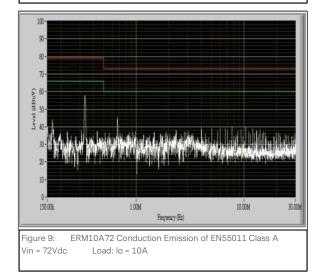
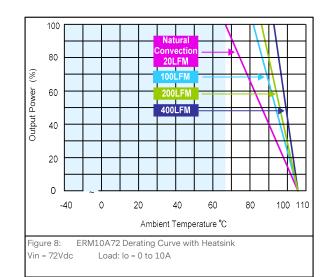


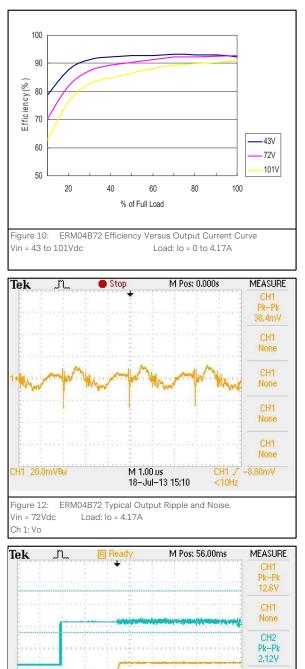
Figure 1: ERM10A72 Efficiency Versus Output Current Curve Vin = 43 to 101Vdc Load: Io = 0 to 10A

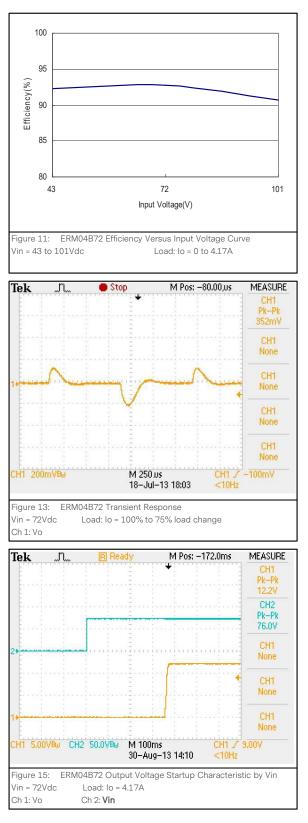



Vin = 72Vdc Load: lo = 10A Ch 1: Vo



ERM10A72 Performance Curves





ERM04B72 Performance Curves

/in = 72Vdc

Ch 1: Vo

CH1 5.00VBa CH2 1.00VBa M 100ms

Load: lo = 4.17A

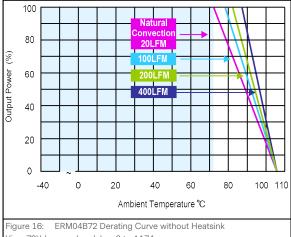
Ch 2: Remote On/Off

22-Jul-13 09:50

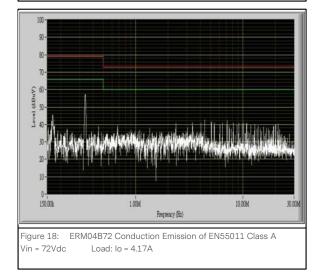
Figure 14: ERM04B72 Output Voltage Startup Characteristic by On/Off

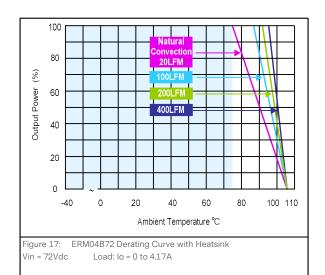
CH1

None


CH1

None


CH2 / 4.16V


<10Hz

ERM04B72 Performance Curves

Vin = 72Vdc Load: lo = 0 to 4.17A

ERM03C72 Performance Curves

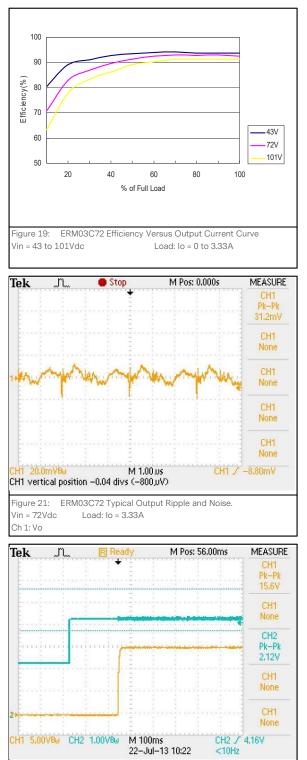
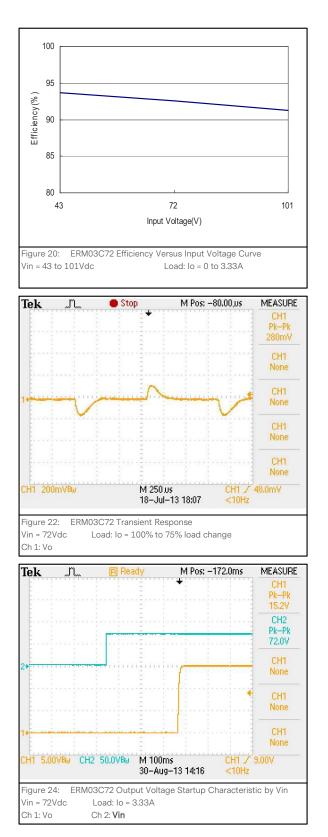
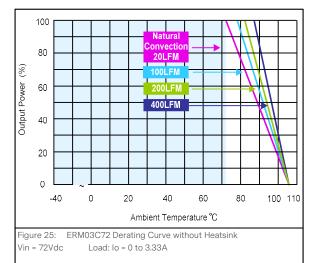
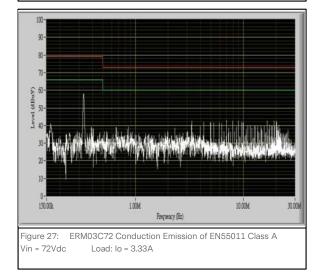
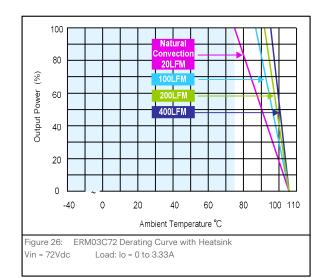



 Figure 23:
 ERM03C72 Output Voltage Startup Characteristic by **On/Off**


 Vin = 72Vdc
 Load: Io = 3.33A


 Ch 1: Vo
 Ch 2: Remote On/Off



ERM03C72 Performance Curves

ERM02H72 Performance Curves

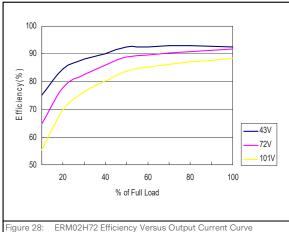
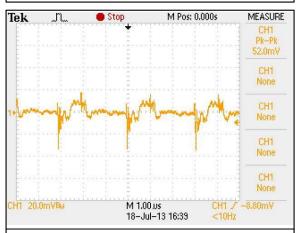
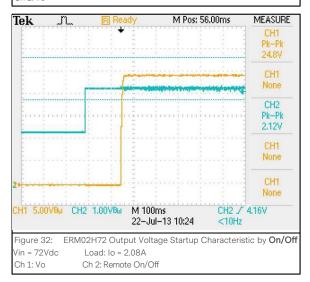
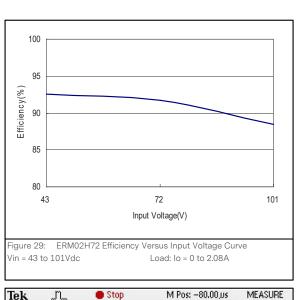
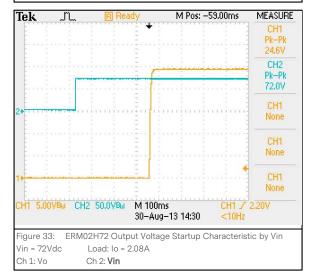
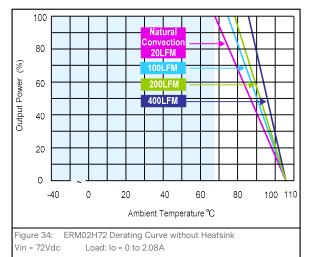
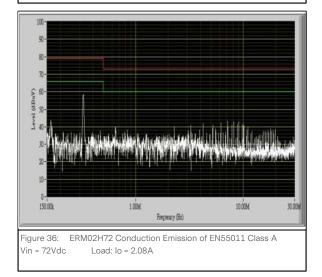


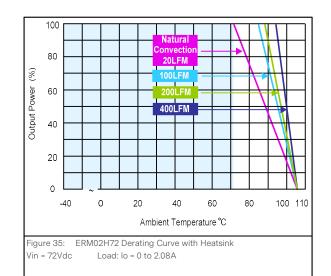
Figure 28: ERM02H72 Efficiency Versus Output Current Curve Vin = 43 to 101Vdc Load: Io = 0 to 2.08A


Figure 30: ERM02H72 Typical Output Ripple and Noise. Vin = 72Vdc Load: Io = 2.08A Ch 1: Vo






Vin = 72Vdc Load: Io = 100% to 75% load change Ch 1: Vo

ERM02H72 Performance Curves

ERM10A110 Performance Curves

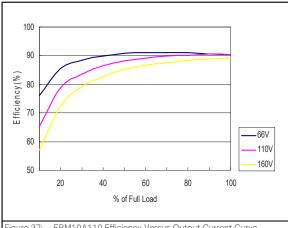


Figure 37: ERM10A110 Efficiency Versus Output Current Curve Vin = 66 to 160Vdc Load: lo = 0 to 10A

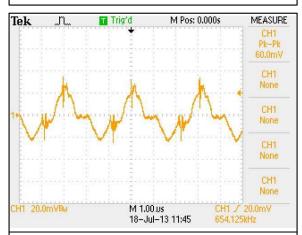
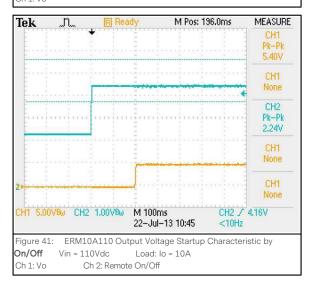
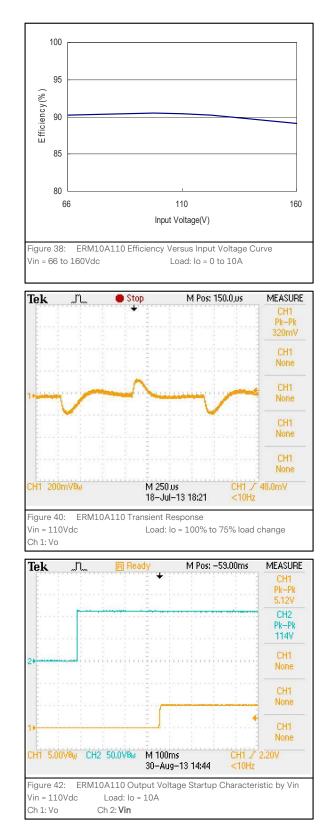
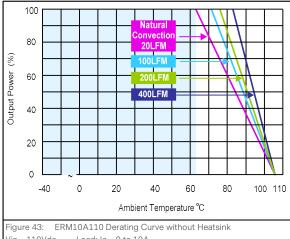
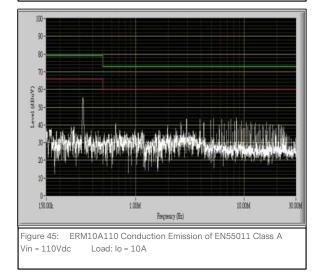
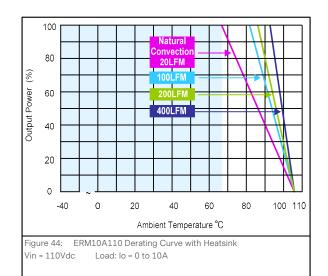





Figure 39: ERM10A110 Typical Output Ripple and Noise. Vin = 110Vdc Load: lo = 10A Ch 1: Vo

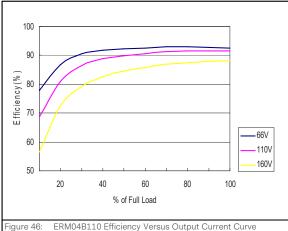
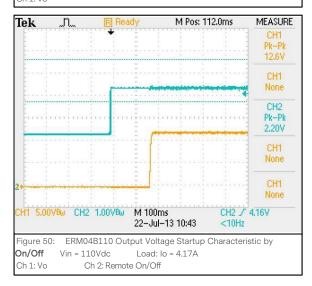


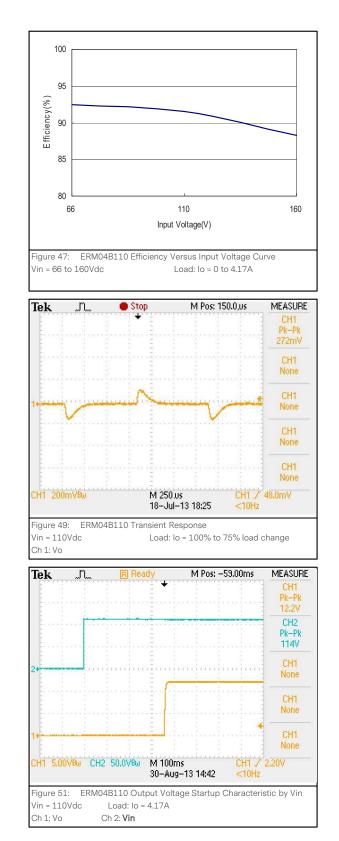


ERM10A110 Performance Curves

Vin = 110Vdc Load: Io = 0 to 10A

ERM04B110 Performance Curves


 Figure 46:
 ERM04B110 Efficiency Versus Output Current Curve

 Vin = 66 to 160Vdc
 Load: Io = 0 to 4.17A

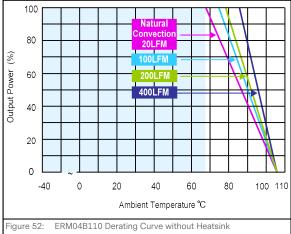
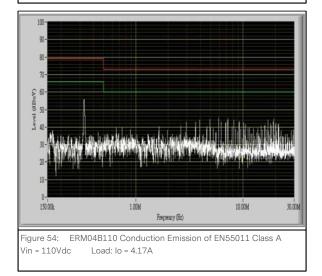
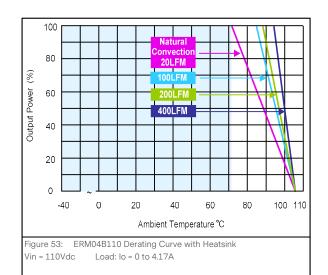
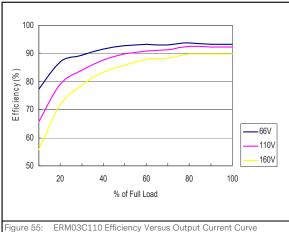


Figure 48: ERM04B110 Typical Output Ripple and Noise. Vin = 110Vdc Load: lo = 4.17A Ch 1: Vo





ERM04B110 Performance Curves


Vin = 110Vdc Load: Io = 0 to 4.17A

ERM03C110 Performance Curves

Vin = 66 to 160Vdc Load: lo = 0 to 3.33A

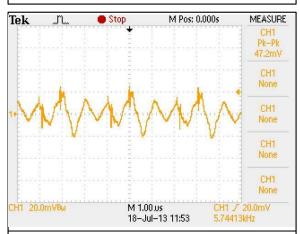
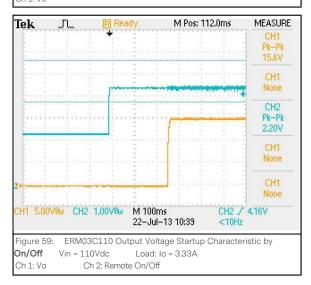
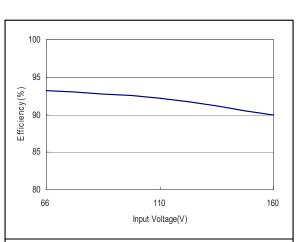
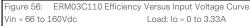
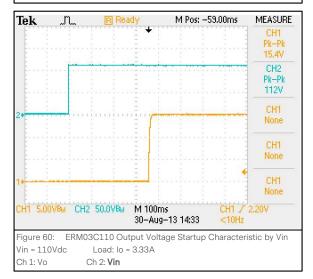
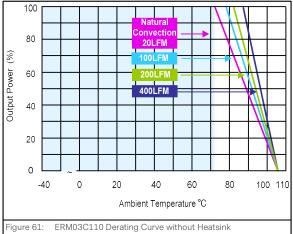
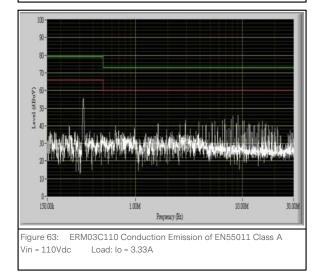





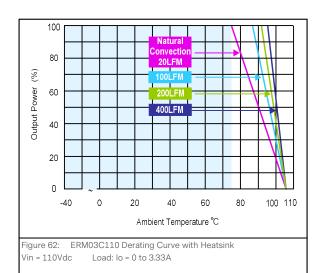
Figure 57: ERM03C110 Typical Output Ripple and Noise. Vin = 110Vdc Load: lo = 3.33A Ch 1: Vo





Vin = 110Vdc Load: lo = 100% to 75% load change Ch 1: Vo

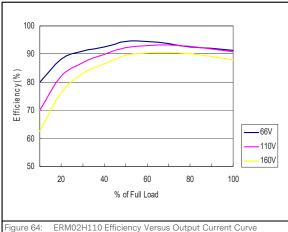
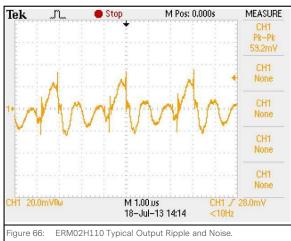
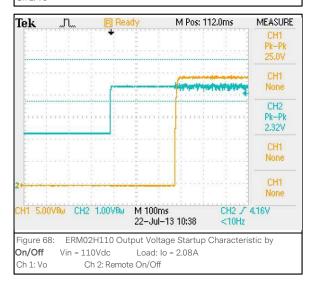


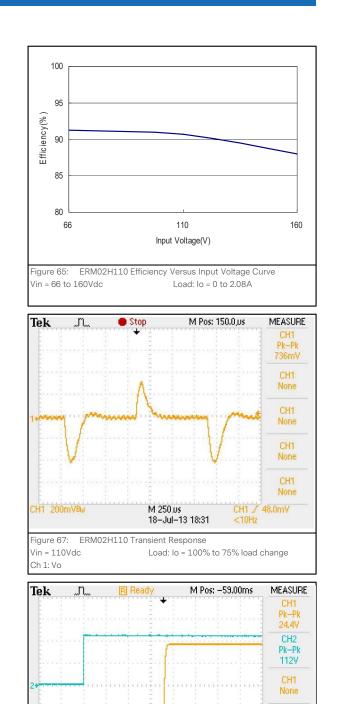


ERM03C110 Performance Curves

Vin = 110Vdc Load: lo = 0 to 3.33A

ERM02H110 Performance Curves


 Figure 64:
 ERM02H110 Efficiency Versus Output Current Curve

 Vin = 66 to 160Vdc
 Load: Io = 0 to 2.08A

Vin = 110Vdc Load: lo = 2.08A Ch 1: Vo

CH1 5.00VBa CH2 50.0VBa M 100ms

Vin = 110Vdc

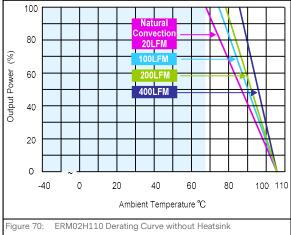
Ch 1: Vo

30-Aug-13 14:31

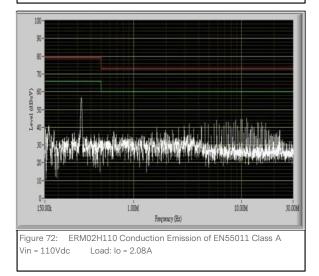
Figure 69: ERM02H110 Output Voltage Startup Characteristic by Vin

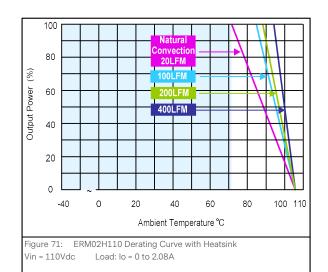
Load: lo = 2.08A Ch 2: **Vin** CH1 / 2.20V

<10Hz


CH1

None


CH1


None

ERM02H110 Performance Curves

Vin = 110Vdc Load: Io = 0 to 2.08A

Protection Function Specification

Over Voltage Protection (OVP)

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage.

Parameter		Min	Nom	Мах	Unit
	ERM10A72 ERM10A110	/	6.2	/	Vdc
V _o Output	ERM04B72 ERM04B110	/	15	/	Vdc
Overvoltage	ERM03C72 ERM03C110	/	18	/	Vdc
	ERM02H72 ERM02H110	/	27	/	Vdc

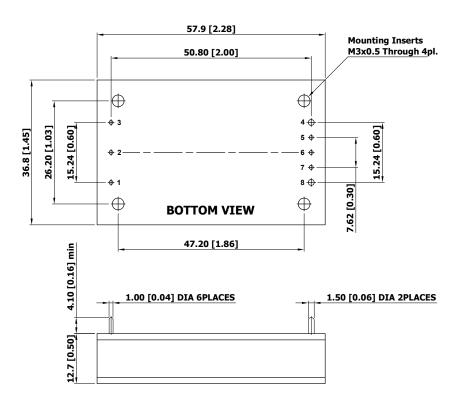
Over Temperature Protection (OTP)

Over Temperature (non-latching), base plate temperature.

Parameter	Min	Nom	Мах	Unit
Over - temperature	-50	/	110	°C

Over Current Protection (OCP)

Current Limitation at 150% typ. of lout max., Hiccup mode. To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.


Parameter		Min	Nom	Мах	Unit
	ERM10A72 ERM10A110	/	15.000	/	A
V _o Output	ERM04B72 ERM04B110	/	6.255	/	A
Overcurrent	ERM03C72 ERM03C110	/	4.995	/	A
	ERM02H72 ERM02H110	/	3.120	/	A

MECHANICAL SPECIFICATIONS

Mechanical Outlines

Pin Connections

Pin 1	-	+Vin
Pin 2	-	Remote On/Off
Pin 3	-	-Vin
Pin 4	-	-Vout
Pin 5	-	-Sense(8)
Pin 6	-	Trim
Pin 7	-	+Sense(8)
Pin 8	_	+Vout

Note:

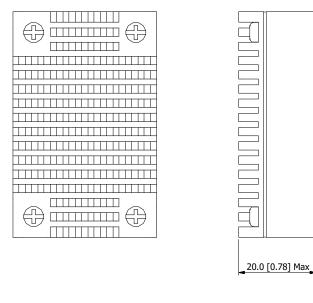
1. If remote sense not used, the +sense should be connected to +output and -sense should be connected to -output.

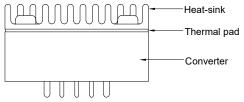
2. All dimensions in mm (inches)

Tolerance: X.X \pm 0.5 (X.XX \pm 0.02)

 $\rm X.XX\pm0.25\,($ $\rm X.XXX\pm0.01)$

3. Pin diameter: 1.0 \pm 0.05 (0.04 \pm 0.002)


4. Pin diameter: 1.5 \pm 0.05 (0.06 \pm 0.002)


MECHANICAL SPECIFICATIONS

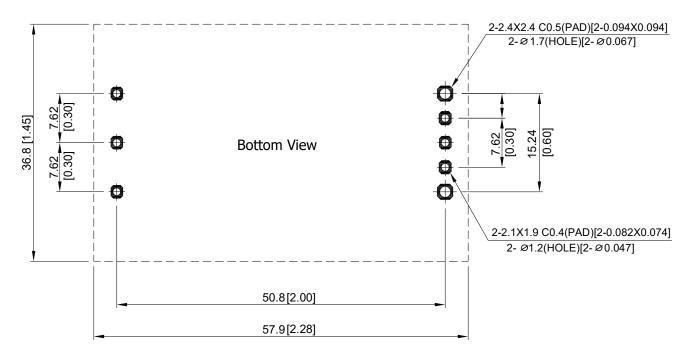
Physical Characteristics

Case Size	57.9x36.8x12.7 mm (2.28x1.45x0.5 inches)	
Case Material	Aluminum Frame with Black Anodized Coating	
Top Side Base Material	Aluminum Plate	
Bottom Side Base Material	Non-conductive Black Plastic Base Plate	
Potting Material	Epoxy (UL94-V0)	

Heatsink (Option –HS)

Heatsink Material: Aluminum Finish: Black Anodized Coating Weight: 13g

The advantages of adding a heatsink are:


1. To help heat dissipation and increase the stability and reliability of DC/DC converters at high operating temperature atmosphere.

2. To upgrade the operating temperature of DC/DC converters, please refer to Derating Curve.

MECHANICAL SPECIFICATIONS

Recommended Pad Layout

EMC Immunity

ERM50 series power supply is designed to meet the following EMC immunity specifications. The ERM50 series can meet EN61000-4-4 & EN61000-4-5 by adding a capacitor across the input pins. Suggested capacitor: CHEMI-CON KXG 470uF/200V.

Table 4. EMC Specifications				
Parameter		Standards & Level Performance		
General	Compliance with EN 5012	Compliance with EN 50121-3-2 Railway Applications		
EMI	Compliance with EN 5012	Compliance with EN 50121-3-2 Railway Applications Class A		
	EN55024			
	ESD	EN61000-4-2 air \pm 8KV , Contact \pm 6KV	Perf. Criteria A	
EMS	Radiated immunity	EN61000-4-3 10V/m	Perf. Criteria A	
	Fast transient	EN61000-4-4 \pm 2KV	Perf. Criteria A	
	Surge	EN61000-4-5 \pm 1KV	Perf. Criteria A	
	Conducted immunity	EN61000-4-6 10V/m	Perf. Criteria A	

Safety Certifications

The ERM50 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 5. Safety Certifications for ERM50 series power supply system		
Document	Description	
cUL/UL 60950-1	US and Canada Requirements	
IEC/EN 60950-1	European Requirements	
IEC/EN 50155	Railway standard	
IEC60571	Railway standard	
CE	European Requirements	

Operating Temperature

			Ma		
Parameter	Model / Condition	Min	Without Heatsink	With Heatsink	Unit
Operating Ambient Temperature Range Natural Convection ¹ Nominal Vin, Load 100% Inom	ERM04B72 ERM03C72 ERM03C110 ERM02H72 ERM04B110 ERM02H110 ERM10A72 ERM10A110	-40	72 72 72 68 68 68 63 63 63	75 75 71 71 71 71 67 67	۰C
	Natural Convection without Heatsink	7.5	-	-	
	Natural Convection with Heatsink	6.8	-	-]
	100LFM Convection without Heatsink	6.1	-	-	1
The sum of land of the second	100LFM Convection with Heatsink	4.1	-	-	∘C/W
Thermal Impedance	200LFM Convection without Heatsink	5.3	-	-	- °C/W
	200LFM Convection with Heatsink	3.3	-	-	1
	400LFM Convection without Heatsink	3.9	-	-	1
	400LFM Convection with Heatsink	2.2	-	-	1
Operating Base-plate Temperature Range		-40	+10)5	°C
RFI	Six-Sid	ed Shielded	, Metal Case		
Lead Temperature (1.5mm from case for 10Sec.)		-	26	0	°C

Note1 - The "natural convection" is about 20LFM but is not equal to still air (0 LFM).

MTBF and Reliability

The MTBF of ERM50 series of DC/DC converters has been calculated using MIL-HDBK 217F NOTICE 2, Operating Temperature 25 °C, Ground Benign.

Model	MTBF	Unit
ERM10A72	315,900	
ERM04B72	482,900	
ERM03C72	460,200	
ERM02H72	420,100	Hours
ERM10A110	314,900	Hours
ERM04B110	431,500	
ERM03C110	456,100	
ERM02H110	414,200	

POWER AND CONTROL SIGNAL DESCRIPTIONS

Power and Signal Pins

These pins provide power and signal interface to the ERM50 series module.

Pin 1	- Vin (+)	– Input Voltage Positive
Pin 2	- Remote On/Off	– ON / OFF Control
Pin 3	- Vin (-)	– Input Voltage Return
Pin 4	- Vout (-)	– Output Voltage Return
Pin 5	- SENSE (-)	– Remote Sense Return
Pin 6	- TRIM	– Output Voltage Trim
Pin 7	- SENSE (+)	– Remote Sense Positive
Pin 8	- Vout (+)	– Output Voltage Positive

Vin (+), Vin (-) – (Pins 1, 3)

These pins are the Input Voltage Positive and Input Voltage Return pins of the module.

Remote On/Off – (Pin 2)

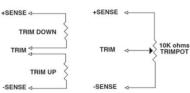
Remote On/Off pin allows the user to turn ON and OFF the output of the ERM50 series modules.

Parameter	Conditions	Min.	Тур.	Max.	Unit				
Converter On		3.5V ~ 12V or Open Circuit							
Converter Off		0V	~ 1.2V or Short Circ	uit					
Control Input Current (on)	Vctrl = 5.0V	-	0.5	-	mA				
Control Input Current (off)	Vctrl = 0V	-	-0.5	-	mA				
Control Common		Refer	enced to Negative I	nput					
Standby Input Current	Nominal Vin	-	2.5	-	mA				

Vout (+), Vout (-) – (Pins 8, 4)

These pins are the Output Voltage Positive and Output Voltage Return pins of the module.

SENSE (+), SENSE (-) – (Pins 7, 5)


The ERM50 is equipped with a Remote Sensing capability that will compensate for voltage drop between the output pins of the module and the sensed voltage point (load). This feature is implemented by connecting the SENSE (+) (pin 7) and the SENSE (-) (pin 5) to the positive and return rails of the output, respectively, at a location that is near to the load. Care should be taken in the routing of the sense lines as any noise sources or additional filtering components introduced into the output voltage rail may affect the stability of the power supply. The ERM50 series will operate appropriately without the sense lines connected; however it is recommended that the sense lines be connected directly to the output pins if remote sensing is not required.

POWER AND CONTROL SIGNAL DESCRIPTIONS

TRIM – (Pin 6)

Output can be externally trimmed by using the method shown below. The trim up/down range is \pm 10% minimum of the nominal output voltage.

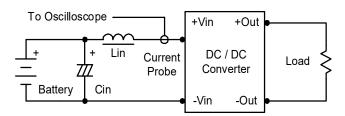
ERM10AXX Trim Table:

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	45.53	20.61	12.31	8.15	5.66	4.00	2.81	1.92	1.23	0.68	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Trim up Vout=	1 Vox1.01	2 Vox1.02	3 Vox1.03	4 Vox1.04	5 Vox1.05	6 Vox1.06	7 Vox1.07	8 Vox1.08	9 Vox1.09	10 Vox1.10	% Vdc

ERM04BXX Trim Table:

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	394.50	179.74	106.08	68.86	46.39	31.36	20.60	12.51	6.21	1.17	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc
Ru=	368.92	161.92	94.97	61.86	42.12	29.00	19.66	12.66	7.23	2.89	KOhm

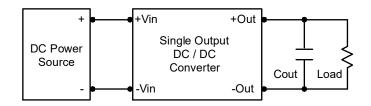
ERM03CXX Trim Table:


Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	572.67	248.63	145.60	94.97	64.87	44.92	30.72	20.10	11.86	5.28	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc
Ru=	392.98	182.12	108.73	71.43	48.85	33.71	22.86	14.69	8.33	3.23	KOhm

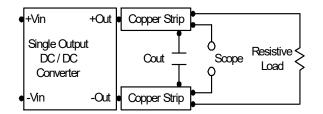
ERM02HXX Trim Table:

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	512	229.6	138.3	90.3	60.7	42.4	29.04	18.67	11.09	4.78	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc
Ru=	574	256.9	149.6	96.5	64.7	43.28	27.68	16.72	7.68	1.11	KOhm

Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin (4.7μ H) and Cin (220μ F, ESR < 1.0Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

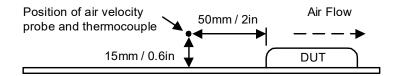
Component	Value	Reference
Lin	4.7μΗ	-
Cin	220uF (ESR<1.0Ω at 100KHz)	Aluminum Electrolytic Capacitor


Output Ripple Reduction

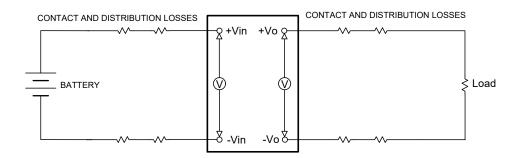
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.

Peak-to-Peak Output Noise Measurement Test

Refer to the output specifications or add 4.7μ F capacitor if the output specifications undefine Cout. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.



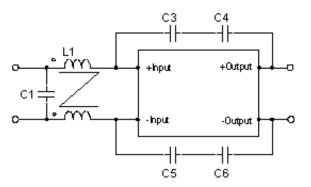
Maximum Capacitive Load


The ERM50 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in below table.

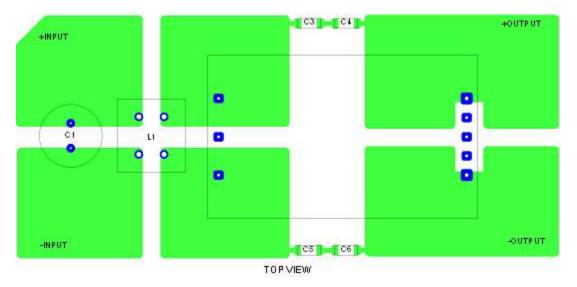
Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105 °C. The derating curves are determined from measurements obtained in a test setup.

Output voltage and efficiency measurement test up



$$Efficiency = \left(\frac{V_{out} \times I_{out}}{V_{in} \times I_{in}}\right) \times 100\% = [\%]$$



EMI Emissions

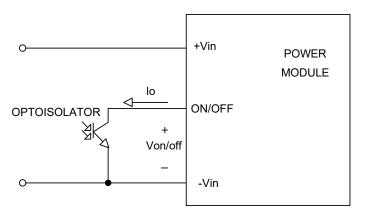
Recommended circuit to comply EN55011 / EN55022 Class A Limits

Recommended PCB Layout with Input Filter

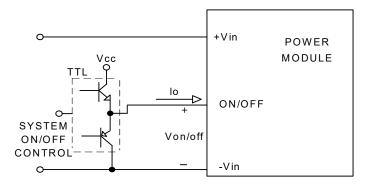
To: comply with EN55011 / EN55022 CLASS A following components are needed:

Model	Component	Value
	C1	CHEMI-CON KXG Series 68uF/200V
ERM50 Series	C3.C4.C5.C6	2200pF/3KV
	L1	450μΗ/450μΗ

Input Source Impedance

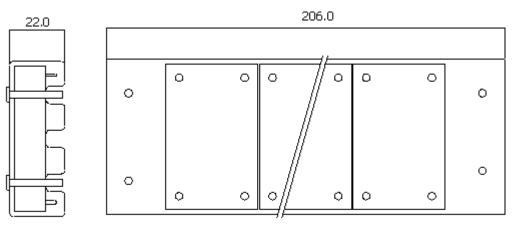

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

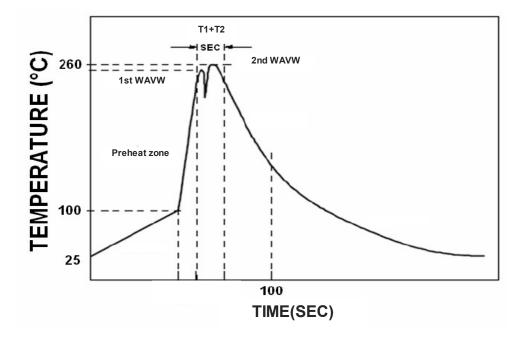

Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a capacitor of a 3.3uF for the 72V input devices and a 1uF for the 110V input devices.

Remote ON/OFF Control

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the - Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100uA. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on. Remote ON/OFF implementation is below.


Isolated-Closure Remote ON/OFF

Level Control Using TTL Output


Packaging Information

unit:mm 5 PCS per TUBE

Soldering and Reflow Considerations

Lead free wave solder profile for ERM50 Series

Weight

The ERM50 series weight is 0.13 lb. (61 grams) maximum.

RECORD OF REVISION AND CHANGES

Issue	Date	Description	Originators
1.0	11.06.2013	First Issue	A. Zhang
1.1	02.17.2014	Change the operating temperature description	A. Zhang
1.2	03.25.2014	Update input UVP voltage	A. Zhang
1.3	05.28.2014	Update EMI level	A. Zhang
1.4	06.13.2014	Duncan update	A. Zhang
1.5	09.23.2014	Duncan update	A. Zhang
1.6	10.11.2014	Duncan update	A. Zhang
1.7	03.29.2017	Update ripple and noise output capacitor value	A. Zhang

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

For international contact information, visit advancedenergy.com.

Advanced Energy

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.