TECHNICAL REFERENCE NOTE

ARTESYN ERM 150W SERIES DC/DC converter

PRODUCT DESCRIPTION

Advanced Energy's Artesyn ERM150 series is a new generation of high performance, isolated dc-dc converter modules. The product offers 150W in a small, fully encapsulated package. The input voltage ranges comply with European railway standard EN50155. Reinforced insulation and high EMC immunity qualifies these converters also for many demanding applications in railway and other transportation systems.

Advanced circuit topology provides a very high efficiency up to 90% which allows ambient temperatures range up to +85°C with derating.

SPECIAL FEATURES

- Small 58.4 x 37.3 x17 mm package
- 36 to 160 Vdc wide-range input
- High efficiency up to 90%
- Base-plate optimized for contact cooling or heatsink mounting
- No minimum load requirement
- Fixed switching frequency
- High reliability
- RoHS 3.0 compliant
- UL94 V-0 materials
- DOSA quarter-brick footprint compliant
- Heatsink version available
- Operating temperature -40 to +85°C (subject to derating)
- EN 61373; Vibration and thermal shock
- 3 years warranty

SAFETY

- TUV EN 62368
- EN 50155 UL UL 62368-1
- TUV CB IEC 62368-1
- IEC 60571
- CE and UKCA Mark

TYPICAL APPLICATIONS

Railway

Advanced

AT A GLANCE

Total Power

150 Watts

Input Voltage

36 to 160 Vdc

of Outputs

Single

©2021 Advanced Energy Industries, Inc.

ERM 150W Series

MODEL NUMBERS

Model	Input Voltage	Output Voltage	Minimum Load	Maximum Load	Efficiency
ERM30A100	36-160Vdc	5Vdc	0A	27A	90%
ERM12B100	36-160Vdc	12Vdc	0A	12.5A	90%
ERM10C100	36-160Vdc	15Vdc	0A	10A	89%
ERM06H100	36-160Vdc	24Vdc	0A	6.25A	88%
ERM02U100	36-160Vdc	54Vdc	0A	2.78A	88.5%

Options

Negative enable (N) Heatsink (-HS)

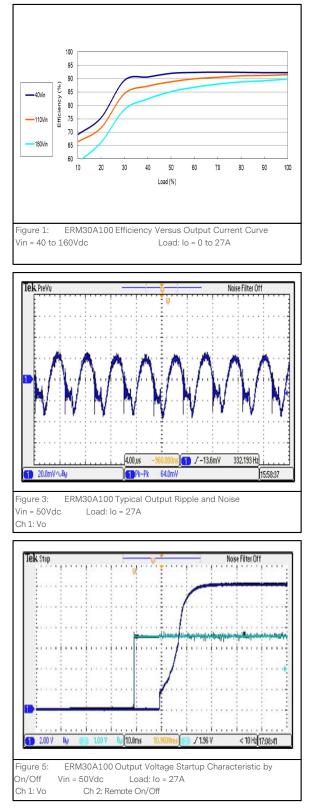
Absolute Maximum Ratings

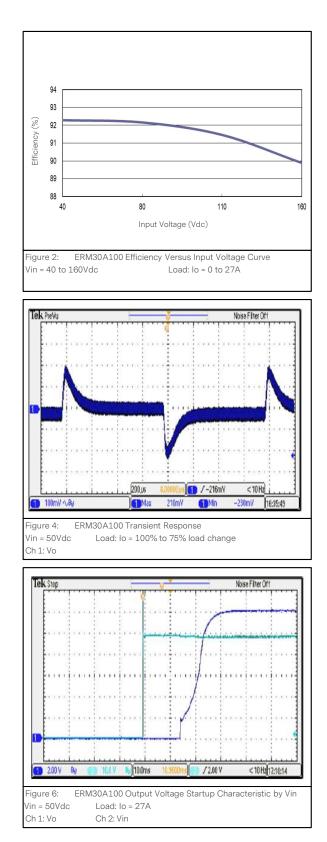
Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings									
Parameter	Model	Symbol	Min	Тур	Max	Unit			
Input Voltage Non-operating - 100mS	All models	V _{IN,DC}	-0.7	-	170	Vdc			
Maximum Output Power	All models	P _{O,max}	-	-	150	W			
Isolation Resistance 500Vdc	All models		10	-	-	Gohm			
I/O Isolation Capacitance 100KHz, 1V	All models		-	-	2000	pF			
Isolation Voltage Input to output Input to case Output to case	All models All models All models		2000 1500 500	- - -	- - -	Vac Vac Vac			
Operating Ambient Temperature (With derating, refer to derating curve)	All models	T _A	-40	-	+85	٥C			
Operating Base-plate Temperature Range	All models		-40	-	+105	°C			
Storage Temperature	All models	T _{STG}	-50	-	+125	°C			
Fire protection test		Complian	ce to EN455	645-2	•				
Humidity (non-condensing)	All models		5	-	95	%			
MTBF (MIL-HDBK-217F@25°C, Full load, Ground Benign)	All models		412,541	-	-	Hours			

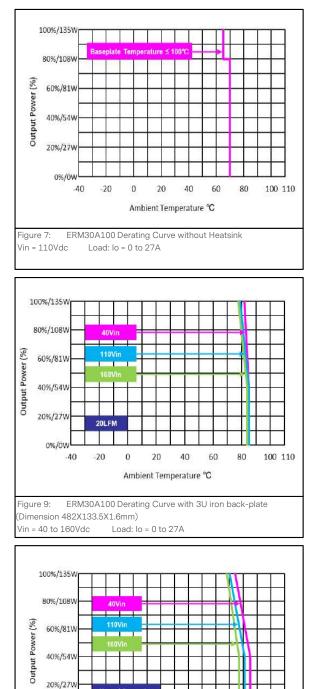
Input Specifications

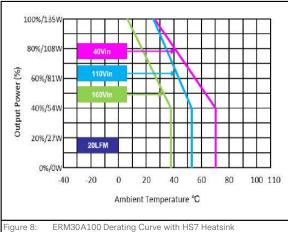
Table 2. Input Specifications									
Parameter		Conditions	Symbol	Min	Тур	Max	Unit		
Operating Input Voltage	, DC	All	V _{IN,DC}	36	110	160	Vdc		
Turn-on Voltage Thresh	old	All	V _{IN,ON}	-	-	36	Vdc		
Turn-off Voltage Thresh	urn-off Voltage Threshold		V _{IN,OFF}	-	35	-	Vdc		
Maximum Input Current	ERM30A100(N)-(HS) ERM12B100(N)-(HS) ERM10C100(N)-(HS) ERM06H100(N)-(HS) ERM02U100(N)-(HS)	V _{IN,DC} =V _{IN,nom} I _O =I _{O,max}	l _{IN,max}		1.364 1.515 1.532 1.550 1.542		A		
No Load Input Current	·	V _{IN,DC} =V _{IN,nom}	I _{IN,no_load}	-	10	-	mA		
Efficiency @Max. Load	ERM30A100(N)-(HS) ERM12B100(N)-(HS) ERM10C100(N)-(HS) ERM06H100(N)-(HS) ERM02U100(N)-(HS)	V _{IN,DC} =V _{IN,nom} I _O =I _{O,max} , T _A =25 ^o C	η	- - -	90 90 89 88 88.5		%		
Start Up Time				-	50	-	mS		
Internal Filter Type			Internal Capacitor						

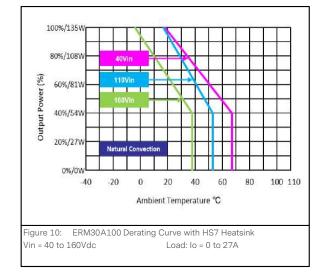



Output Specifications

Parameter		Conditions	Symbol	Min	Тур	Max	Unit
Factory Set Voltage		V _{IN,DC} =V _{IN,nom}	V _o	-1	- Typ	1	%
Line Regulation		$I_0 = I_{0,max}, T_A = 25^{\circ}C$		0.0	-	0.0	%
5		$V_{IN,DC} = V_{IN,min}$ to $V_{IN,max}$	Vo	-0.2		0.2	-
Load Regulation		I _O =I _{O,min} to I _{O,max}	Vo	-0.3	-	0.3	%
Output Current	ERM30A100(N)-(HS) ERM12B100(N)-(HS) ERM10C100(N)-(HS) ERM06H100(N)-(HS) ERM02U100(N)-(HS)	Convection Cooling	lo			27 12.5 10 6.25 2.78	A
oad Capacitance ERM30A100(N)-(HS) ERM12B100(N)-(HS) ERM10C100(N)-(HS) ERM06H100(N)-(HS) ERM02U100(N)-(HS)		Start up	Co			51000 8850 5700 2200 550	uF
Output Voltage Trim	Other Models	A 11	Vo	-10	-	10	%
Range	54V Output	All	Vo	-15	-	5	%
Switching Frequency	Other Models	All	f _{sw}	-	200	-	KHz
Switching riequency	54V Output	All	f _{sw}	-	180	-	KHz
Temperature Coefficien	t	All	%V _o	-	-	0.02	%/°C
Output Over Current Pre	otection	All	%I _{O,max}	-	130	-	%
Output Temperature Pro	otection (Baseplate)	All	T _{Baseplate}	-	110	-	°C
Output Short Circuit Pro	otection	All	Hiccu	up Mode 0.3	Hz type, Au	itomatic Re	covery
Output Ripple, pk-pk	ERM30A100(N)-(HS) ERM12B100(N)-(HS) ERM10C100(N)-(HS) ERM06H100(N)-(HS) ERM02U100(N)-(HS)	20MHz bandwidth	Vo	-	100 150 150 200 300	-	mV _{PK-PK}
Output Over Voltage ProtectionERM30A100(N)-(HS) ERM12B100(N)-(HS) ERM10C100(N)-(HS) ERM06H100(N)-(HS) ERM02U100(N)-(HS)		All	Vo	- - - -	6.2 15 18 30 66	- - - -	Vdc
V _o Dynamic Response Peak Deviation Recovery Time		25% load change	±%V _o T _s	-	3 250	5	% uSec




ERM30A100 Performance Curves



ERM30A100 Performance Curves

(Dimension 482X133.5X1.6mm) Vin = 40 to 160Vdc Load: Ic

0%/0W

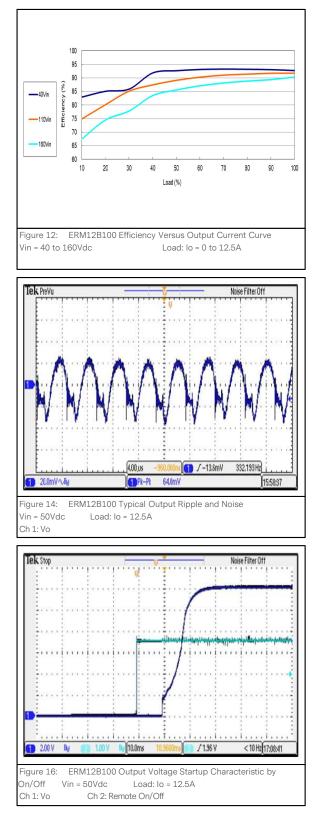
-20

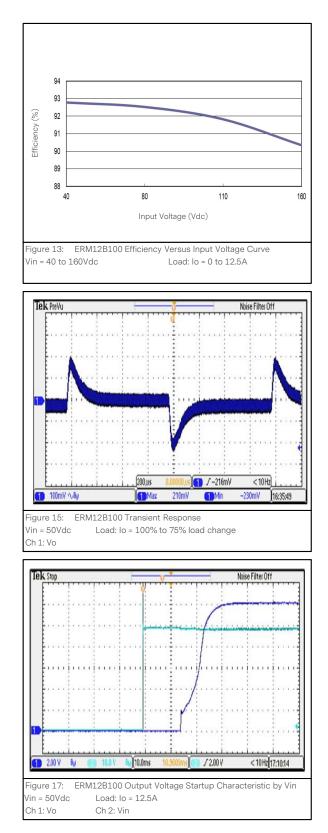
0

Figure 11: ERM30A100 Derating Curve with 3U iron back-plate

Load: Io = 0 to 27A

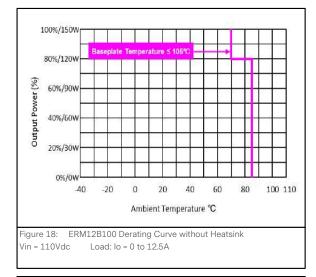
20


Ambient Temperature °C


40 60

80

100 110


ERM12B100 Performance Curves

ERM12B100 Performance Curves

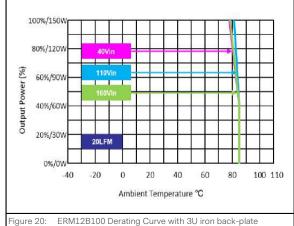
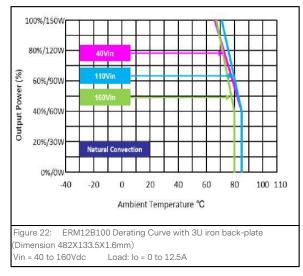
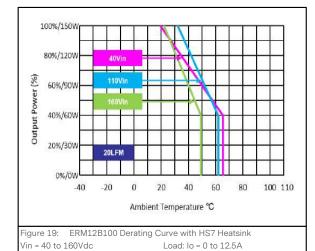
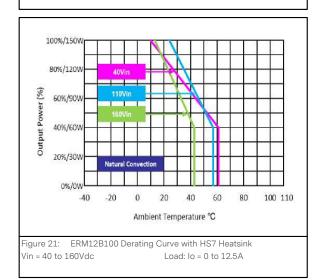
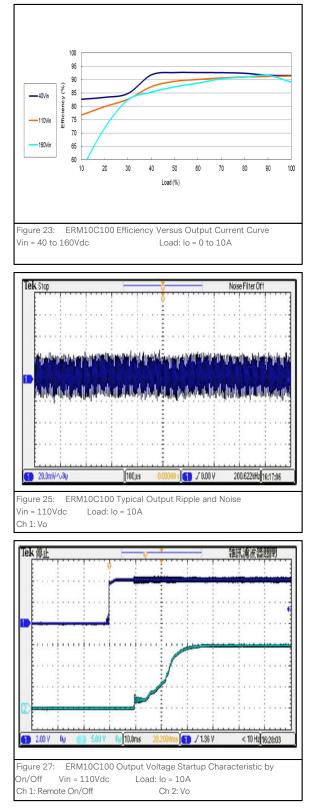
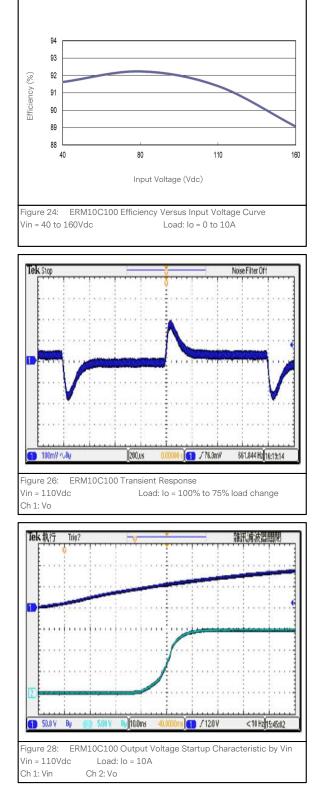
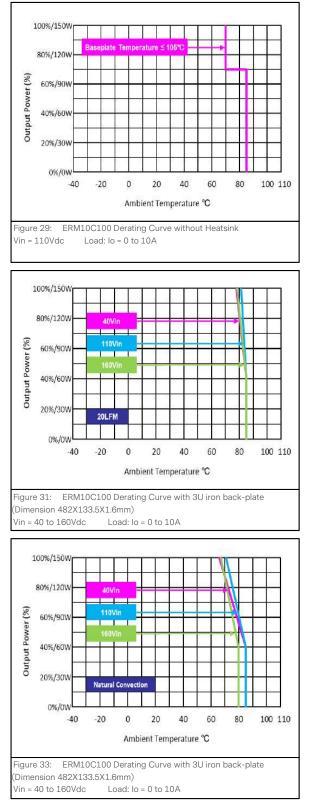
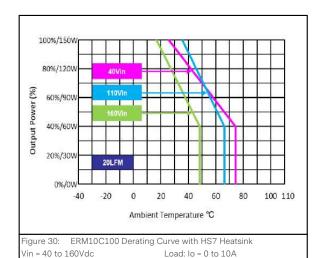





Figure 20: ERM12B100 Derating Curve with 3U iron back-plate (Dimension 482X133.5X1.6mm) Vin = 40 to 160Vdc Load: lo = 0 to 12.5A






ERM10C100 Performance Curves



ERM10C100 Performance Curves

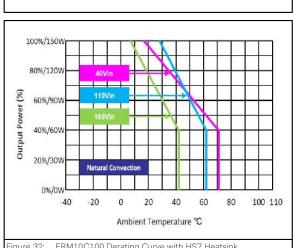
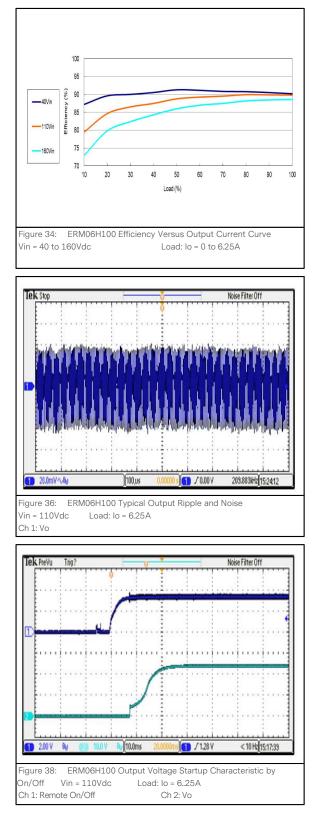
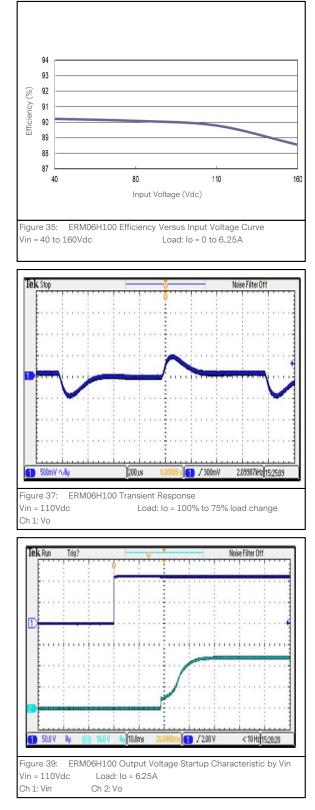
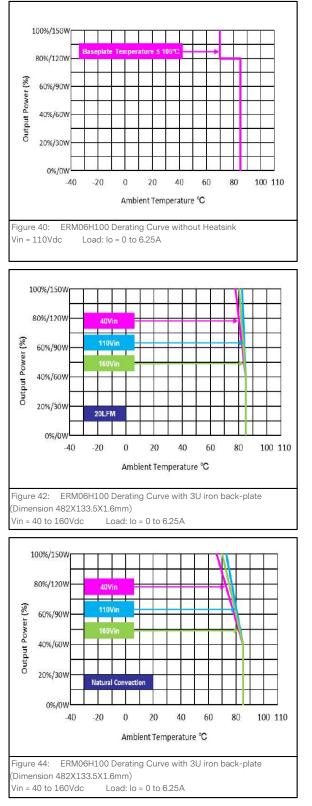
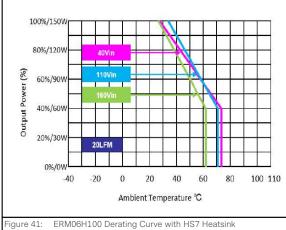
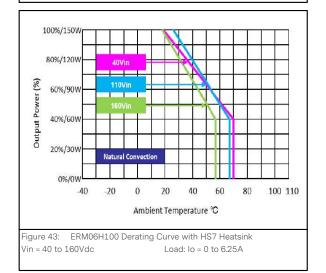
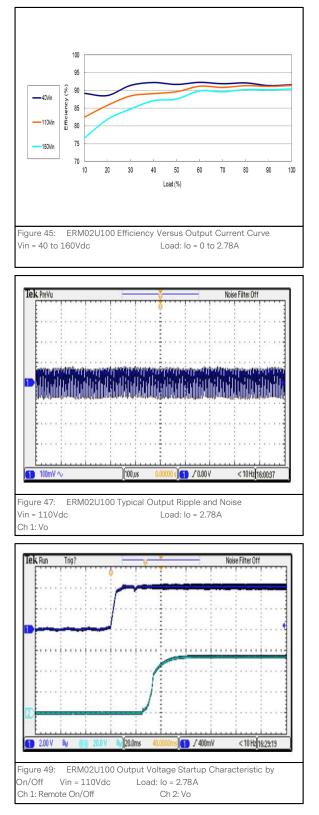




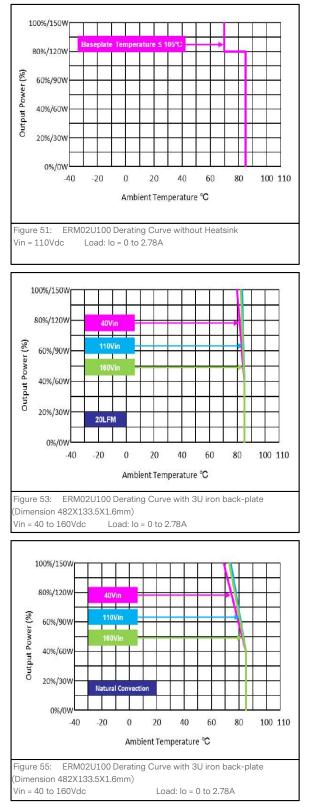
Figure 32:ERM10C100 Derating Curve with HS7 HeatsinkVin = 40 to 160VdcLoad: lo = 0 to 10A

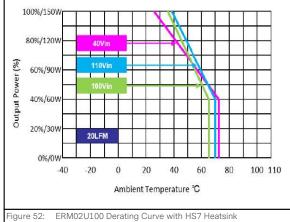

ERM06H100 Performance Curves

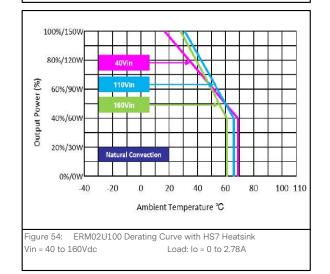



ERM06H100 Performance Curves

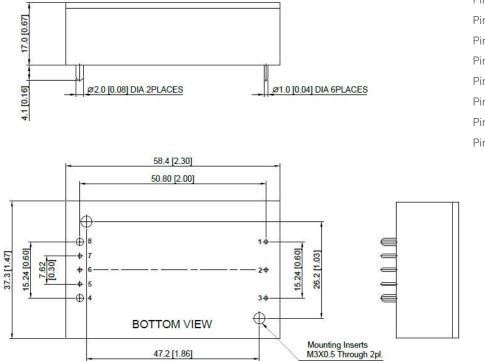





ERM02U100 Performance Curves



ERM02U100 Performance Curves



MECHANICAL SPECIFICATIONS

Mechanical Outlines

Pin Connections

Pin 1	-	+Vin
Pin 2	-	Remote On/Off
Pin 3	_	-Vin
Pin 4	-	-Vout
Pin 5	-	-Sense
Pin 6	-	Trim
Pin 7	-	+Sense
Pin 8	-	+Vout

Note:

1. If remote sense not used, the +sense should be connected to +output and -sense should be connected to -output.

2. All dimensions in mm (inches)

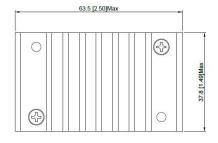
Tolerance: $X.X \pm 0.5 (X.XX \pm 0.02)$

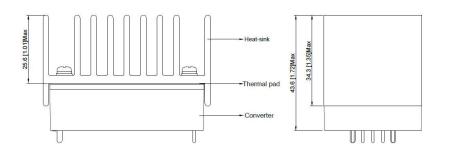
X.XX±0.25(X.XXX±0.01)

3. Pin diameter: 1.0 \pm 0.05 (0.04 \pm 0.002)

4. Pin diameter: 1.5 \pm 0.05 (0.06 \pm 0.002)

Physical Characteristics


Case Size	58.4x37.3x17.0 mm (2.30x1.47x0.67 inches)
Case Material	Plastic resin (flammability to UL 94V-0 rated)
Top Side Base Material	Aluminum Plate
Potting Material	Silicone (UL94-V0)
Weight	110g



MECHANICAL SPECIFICATIONS

Mechanical Outlines – Heatsink

ERM 150W Series

Note: 1. All dimensions in mm (inches)

2. Tolerance: XX \pm 0.75 (X.XX \pm 0.03) X.XX \pm 0.25 (X.XX \pm 0.01) 3. Pin diameter 1.0 \pm 0.05 (0.04 \pm 0.002)

Physical Characteristics

Heatsink Size	63.5x37.8x25.6 mm (2.5x1.49x1.01 inches)
Material	Aluminum
Finish	Black Anodized Coating
Weight	63g

ENVIRONMENTAL SPECIFICATIONS

EMC Immunity

ERM 150W Series power supply is designed to meet the following EMC immunity specifications:

Table 4. EMC Specifications:								
Parameter		Standards & Level Performance						
General	Compliance with EN50121-3-	ompliance with EN50121-3-2 Railway Applications						
EMI	Conduction	EN 55032/11with an external filter ¹	Class A					
	Radiation		Class A					
	EN 55024, EN 55035							
	ESD	EN61000-4-2 Air \pm 8kV, Contact \pm 6kV	Criteria A					
	Radiated immunity	EN61000-4-3 10V/m	Criteria A					
EMS	Fast transient ²	EN61000-4-4 ±2KV	Criteria A					
	Surge ²	EN61000-4-5±1KV	Criteria A					
	Conducted immunity	EN61000-4-6 10Vrms	Criteria A					
	PFMF	EN61000-4-8 3A/M	Criteria A					

Note1 - Refer to page 25-30. Note2 - To meet EN 61000-4-4 & EN 61000-4-5 with an external filter requested.

ENVIRONMENTAL SPECIFICATIONS

Safety Certifications

The ERM150 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 5. Safety Certifications for ERM150 series power supply system								
Standard	Agency	Description						
UL 62368-1	UL+CUL	US and Canada Requirements						
EN 62368-1	TUV	European Requirements						
IEC 62368-1	СВ	International Electrotechnical Commission						
EN 50155	TUV	Railway standard						
IEC 60571	СВ	Railway standard						
CE Mark		European Requirements						
UKCA Mark		UK Requirements						

POWER AND CONTROL SIGNAL DESCRIPTIONS

Power and Signal Pins

These pins provide power and signal interface to the ERM150 series module.

Pin 1	- Vin (+)	- Input Voltage Positive
Pin 2	- Remote On/Off	- ON / OFF Control
Pin 3	- Vin (-)	- Input Voltage Return
Pin 4	- Vout (-)	- Output Voltage Return
Pin 5	- Sense (-)	- Remote Sense Return
Pin 6	- TRIM	- Output Voltage Trim
Pin 7	- Sense (+)	- Remote Sense Positive

- im sitive
- Pin 8 Vout (+) Output Voltage Positive

Vin (+), Vin (-) – (Pins 1, 3)

These pins are the input voltage positive and input voltage return pins of the module.

Remote On/Off – (Pin 2)

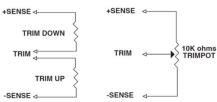
Remote On/Off pin allows the user to turn ON and OFF the output of the ERM150 series modules.

Parameter	Conditions	Min.	Тур.	Max.	Unit			
Converter On	3.5V to 12V or Open Circuit							
Converter Off	0V to 1.2V or Short Circuit							
Control Input Current (on)	Vctrl = 5.0V -		-	0.5	mA			
Control Input Current (off)	Vctrl = 0V -		-	-0.5	mA			
Control Common	Referenced to Negative Input							
Standby Input Current	Nominal Vin	Nominal Vin -		-	mA			

Vout (+), Vout (-) – (Pins 8, 4)

These pins are the output voltage positive and output voltage return pins of the module.

Sense (+), Sense (-) – (Pins 7, 5)


The ERM150 is equipped with a remote sensing capability that will compensate for voltage drop between the output pins of the module and the sensed voltage point (load). This feature is implemented by connecting the Sense (+) (pin 7) and the Sense (-) (pin 5) to the positive and return rails of the output, respectively, at a location that is near to the load. Care should be taken in the routing of the sense lines as any noise sources or additional filtering components introduced into the output voltage rail may affect the stability of the power supply. The ERM150 series will operate appropriately without the sense lines connected; however it is recommended that the sense lines be connected directly to the output pins if remote sensing is not required.

POWER AND CONTROL SIGNAL DESCRIPTIONS

Trim – (Pin 6)

Output can be externally trimmed by using the method shown below. The trim up/down range is ±10% minimum of the nominal output voltage.

ERM30A100(N)-(HS) Trim Table:

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	138.88	62.41	36.92	24.18	16.53	11.44	7.79	5.06	2.94	1.24	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc
Ru=	106.87	47.76	28.06	18.21	12.30	8.36	5.55	3.44	1.79	0.48	KOhm

ERM12B100(N)-(HS) Trim Table:

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	413.55	184.55	108.22	70.05	47.15	31.88	20.98	12.80	6.44	1.35	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc
Ru=	351.00	157.50	93.00	60.75	41.40	28.50	19.29	12.37	7.00	2.70	KOhm

ERM10C100(N)-(HS) Trim Table:

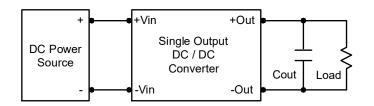
Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	530.73	238.61	141.24	92.56	63.35	43.87	29.96	19.53	11.41	4.92	KOhm
Trim up	4	•	•		_			•	•	10	~
Thin up	T	2	3	4	5	6	/	8	9	10	%
Vout=	L Vox1.01	2 Vox1.02	3 Vox1.03	4 Vox1.04	5 Vox1.05	6 Vox1.06	/ Vox1.07	8 Vox1.08	9 Vox1.09	10 Vox1.10	% Vdc

ERM 150W Series

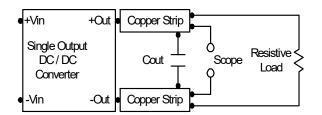
POWER AND CONTROL SIGNAL DESCRIPTIONS

ERM06H100(N)-(HS) Trim Table:

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	598.66	267.78	157.49	102.34	69.25	47.19	31.44	19.62	10.43	3.08	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc
Ru=	487.14	218.02	128.31	83.46	56.55	38.61	25.79	16.18	8.70	2.72	KOhm


ERM02U100(N)-(HS) Trim Table:

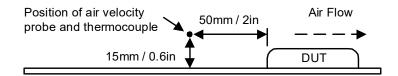
Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	1882.57	877.94	543.06	375.62	275.15	208.18	160.34	124.46	96.55	74.23	KOhm
Trim down	11	12	13	14	15						%
Vout=	Vox0.89	Vox0.88	Vox0.87	Vox0.86	Vox0.85						Vdc
Ru=	55.96	40.74	27.86	16.82	7.25						KOhm
Trim up	1	2	3	4	5						%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05						Vdc
Ru=	560.73	230.36	120.24	65.18	32.15						KOhm


Output Ripple Reduction

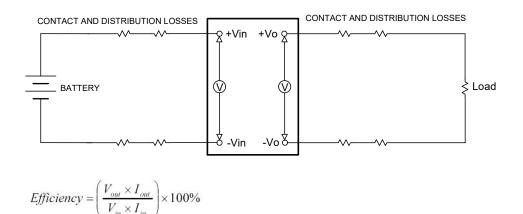
A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.

Peak-to-Peak Output Noise Measurement Test

Use a 22uF polymer capacitor for 5V, 12V, 15V output models and a 33uF polymer capacitor for 24V output model and a 1uF ceramic capacitor for 54V output model. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

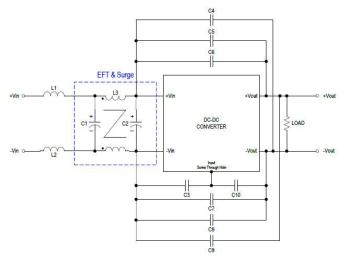

Maximum Capacitive Load

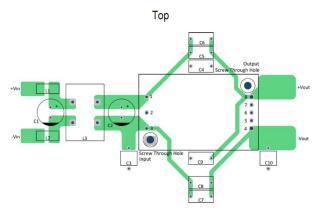
The ERM150 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in table 3.

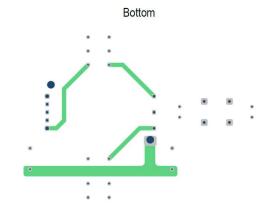


Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105 °C. The derating curves are determined from measurements obtained in a test setup.

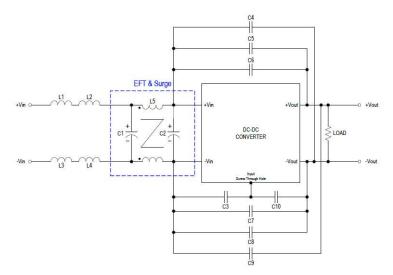

Output Voltage and Efficiency Measurement Test



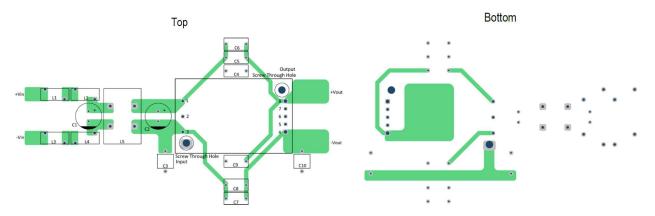

EMI Emissions

Recommended circuit to comply EN55032 Class A Limits

Recommended PCB Layout with Input Filter

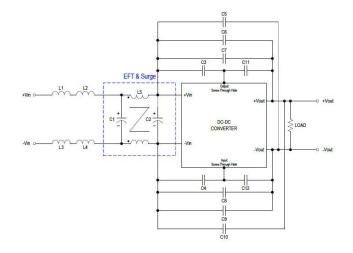


To comply with EN55032 Class A following components are needed:

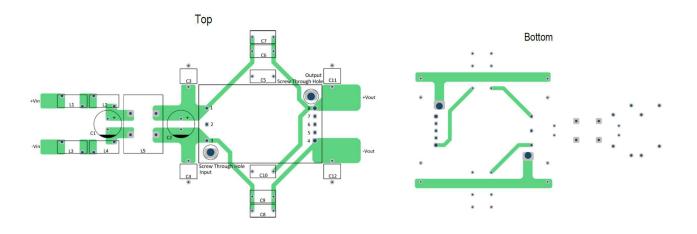

Model	Component	Value			
	L1,L2	425Ω(25MHz)/5A			
	C1	150uF/200V			
	L3	7mH/7A			
ERM30A100	C2	82uF/200V			
ERIVISUATUU	C3,C10	220pF/Y1 Cap			
	C4,C9	2200pF/Y1 Cap			
	C5,C8	4700pF/Y1 Cap			
	C6,C7	-			

Recommended circuit to comply EN55032 Class A Limits

Recommended PCB Layout with Input Filter


To: comply with EN55032 Class A following components are needed:

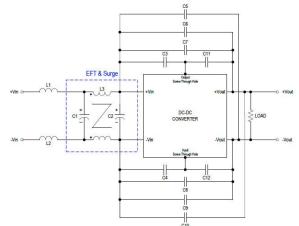
Model	Component	Value			
	L1, L2, L3, L4	2uH/5A			
	C1, C2	150uF/200V			
ERM12B100	L5	9mH/5A			
ERIVITZBIOO	C3, C10	470pF/Y1 Cap			
	C5, C8	4700pF/Y1 Cap			
	C4, C6, C7, C9	-			

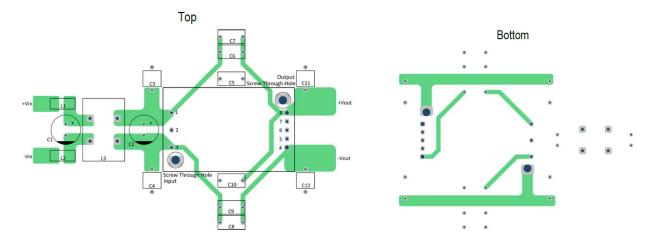


Model	Component	Value			
	L1, L2, L3, L4	2uH/5A			
	C1, C2	150uF/200V			
	L5	9mH/5A			
ERM10C100	C3, C10	470pF/Y1 Cap			
	C4, C9	2200pF/Y1 Cap			
	C5, C8	4700pF/Y1 Cap			
	C6, C7	-			

Recommended circuit to comply EN55032 Class A Limits

Recommended PCB Layout with Input Filter

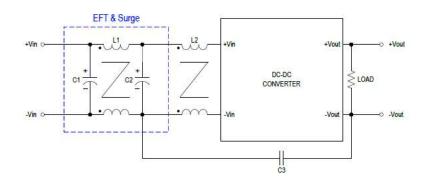



To: comply with EN55032 Class A following components are needed:

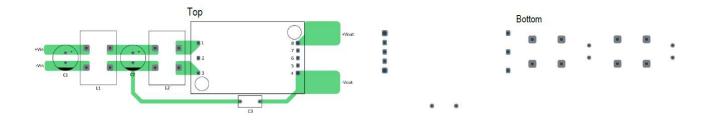
Model	Component	Value			
	L1, L2, L3, L4	2uH/5A			
	C1, C2	150uF/200V			
	L5	3.3mH/4A			
ERM6H100	C3, C4,C11, C12	220pF/Y1 Cap			
	C5	1000pF/Y1 Cap			
	C6, C9	4700pF/Y1 Cap			
	C7, C8, C10	-			

Recommended circuit to comply EN55032 Class A Limits

Recommended PCB Layout with Input Hilter

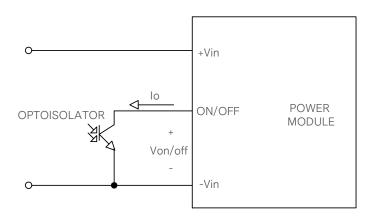


To comply with EN55032 Class A following components are needed:

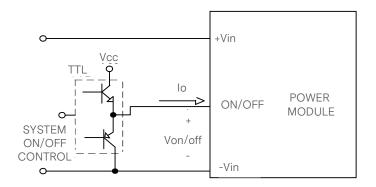

Model	Component	Value			
	L1, L2	425Ω(25MHz)/5A			
	C1	150uF/200V			
	C2	82uF/200V			
ERM02U100	L3	7mH/7A			
ERIVIOZO100	C3, C4, C11, C12	220pF/Y1 Cap.			
	C5, C7, C8	2200pF/Y1 Cap.			
	C6, C9	4700pF/Y1 Cap.			
	C10	-			

Recommended circuit to comply EN55032 Class B Limits

Recommended PCB Layout with Input Filter

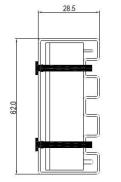

To comply with EN55032 Class B following components are needed:

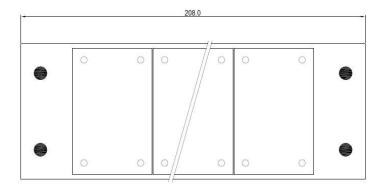
Model	Component	Value			
	C1	390uF/200V			
	L1	7mH/7A			
ERM150 Series	C2	150uF/200V			
	L2	2.2mH/6A			
	C3	4700pF/Y1 Cap.			



Remote ON/OFF Control

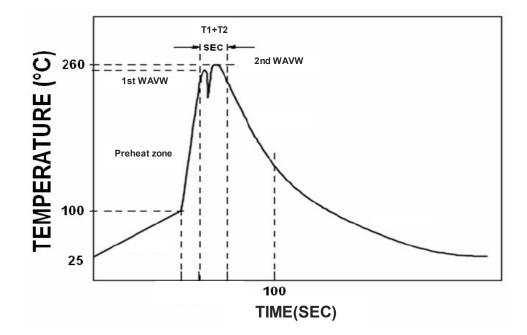
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the - Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100uA. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on. Remote ON/OFF implementation is below.


Isolate-Closure Remote ON/OFF



Level Control Using TTL Output

Packaging Information



Unit: mm 5 PCS per TUBE (Without heatsink)

Soldering and Reflow Considerations

Lead free wave solder profile for ERM150 Series

ERM 150W Series

RECORD OF REVISION AND CHANGES

Issue	Date	Description	Originators
1.0	08.08.2022	First Issue	J.Zhang

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

visit advancedenergy.com. powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support)

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.

+1 888 412 7832

For international contact information,

ERM 150W Series - Rev. 08.08.22_#1.0