TECHNICAL REFERENCE NOTE

ARTESYN LGACSERIES Non Isolated DC/DC Converter

PRODUCT DESCRIPTION

Advanced Energy's Artesyn LGA C Series is a high density, nonisolated board-mounted DC-DC converter for space sensitive applications. This Embedded Power Device (EPD) has a wide input range up to14 V and offers a 0.59-5.1 V adjustable output with 3, 6, 10 and 20 A capability without derating. This EPD offers a complete feature set of enable, remote sense, and power good inclusive of a wide adjustable output range.

SPECIAL FEATURES

- 3, 6, 10 and 20 A output current rating
- Wide input voltage range: 3.4 to 14 V
- Adjustable output voltage: 0.59 to 5.1 V
- Excellent transient response
- High efficiency
- Output margining
- Power enable
- Minimal airflow requirement
- Termination voltage capability
- Ultra compact profile and footprint
- Remote sense
- RoHS compliant

SAFETY

- Designed to meet EN60950
- International standards for Solderability: J-STD-002B IEC-60068-2-58

TYPICAL APPLICATIONS

- ASIC
- Memory
- FPGAs
- Telecom and networking equipment
- Servers
- Industrial equipment
- POL regulation

Total Power

15 to 100 Watts

Input Voltage

3.4 to 14 Vdc

of Outputs

Single

LGA C Series

MODEL NUMBERS

Model Number	Input Voltage	Output Voltage	Minimum Load	Maximum Load
LGA03C-00SADJJ	3.4 to 14Vdc	0.59 to 5.1Vdc	0A	3A
LGA06C-00SADJJ	3.4 to 14Vdc	0.59 to 5.1Vdc	0A	6A
LGA10C-00SADJJ	3.4 to 14Vdc	0.59 to 5.1Vdc	0A	10A
LGA20C-01SADJJ	4.5 to 14Vdc	0.59 to 5.1Vdc	0A	20A

Ordering information

LGA	03	С	-	00	SADJ	Х	J
1)	2	3		(4)	5	6	7

(1)	Model Series	LGA: Land Grid Array
2	Rated Output Current	03: 3A 06: 6A 10: 10A 20: 20A
3	Performance	C: Cost optimized
4	Input Voltage Range	00: 3.4 to 14Vdc 01: 4.5 to 14Vdc
5	Type of Outputs	SADJ: Single adjustable output
6	Options	X: Various options (see sales rep)
7	RoHS	J: Pb free (RoHS 6/6 compliant)

Options

None

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings										
Parameter	Model	Symbol	Min	Тур	Max	Unit				
Input Voltage (DC continuous operation)	All models	V _{IN}	3.4	-	14	Vdc				
Maximum Output Power	LGA03C LGA06C LGA10C LGA20C	P _{O,max}	- - -	- - -	15 30 50 100	W				
Enable Voltage	All models		0	-	5	Vdc				
Operating Ambient Temperature ¹	All models	T _A	-40	-	+85	°C				
Storage Temperature	All models	T _{STG}	-40	-	+125	°C				
Case Temperature	All models	T _C	-	-	+100	°C				

Note 1 - The LGA C series module has an operating temperature range of -40 °C to 85 °C with suitable derating. See detailed derating curves.

Input Specifications

Table 2. Input Specifications									
Parameter		Condition	Symbol	Min	Тур	Max	Unit		
Operating Input Voltage, DC	LGA03C LGA06C LGA10C LGA20C	All	V _{IN}	3.4 3.4 3.4 4.5	- - -	14 14 14 14	Vdc		
Maximum Input Current	LGA03C LGA06C LGA10C LGA20C	All	l _{IN,max}	- - -	- - -	3 6 10 20	A		
Standby Input Current	LGA03C LGA06C LGA10C LGA20C	V _{IN} =12V, V _O =Off	_{N,standby}		14 14 14 13		mA		
No Load Input Current	LGA03C LGA06C LGA10C LGA20C	V _{IN} =12V, V _O =2.5V, I _O =0A	_{IN,no-load}	- - -	55 94 100 87	- - -	mA		
	LGA03C (I _o =3A)	V _{IN} =5V, V _O =0.9V V _{IN} =12V, V _O =2.5V V _{IN} =12V, V _O =5V	η		79.1 86.4 91.8	- - -	%		
Efficiency	LGA06C (I _O =6A)	V _{IN} =5V, V _O =0.9V V _{IN} =12V, V _O =2.5V V _{IN} =12V, V _O =5V	η	- -	80.1 86.5 92.1	- - -	%		
Efficiency	LGA10C (I _O =10A)	V _{IN} =5V, V _O =0.9V V _{IN} =12V, V _O =2.5V V _{IN} =12V, V _O =5V	η	- -	76.6 85.9 91.7	- -	%		
	LGA20C (I ₀ =20A)	V _{IN} =5V, V _O =0.9V V _{IN} =12V, V _O =2.5V V _{IN} =12V, V _O =5V	η	- -	77.3 86.6 91.2	- - -	%		
Input Capacitance (Internal)				-	10	-	μF		
Input Capacitor (External)		Required for input ripple current		-	1	-	μF		

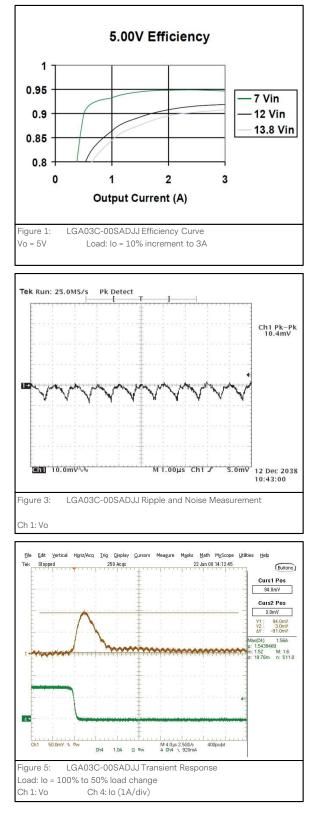
Output Specifications

Table 3. Output Specifications							
Parameter		Conditions	Symbol	Min	Nom	Max	Unit
Output Voltage		All	Vo	0.59	-	5.1	Vdc
Output Current	LGA03C LGA06C LGA10C LGA20C	All	I _O	0 0 0 0	- - -	3 6 10 20	A A A A
Output Set-point Accuracy		0.1% trim resistors	%V _o	-1	-	+1	%
Output Line Regulation		All	%V _o	-0.2	-	+0.2	%
Output Load Regulation		All	%V _O	-0.5	-	+0.5	%
Turn On Delay		From V_{IN} or Enable	T _{turn-on}	-	2	3	mS
Output Rise Time		From 10% to 90%V _o	T _{rise}	-	1.5	-	mS
	LGA03C	V _{IN} =5V, V _O =0.9V V _{IN} =12V, V _O =2.5V V _{IN} =12V, V _O =5V	V _o	- -	15 20 30		mV _{PK-PK}
Output Ripple and Noise (with	LGA06C	V _{IN} =5V, V _O =0.9V V _{IN} =12V, V _O =2.5V V _{IN} =12V, V _O =5V	Vo	- - -	20 35 50	- - -	mV _{PK-PK}
10μF output cap)	LGA10C	V _{IN} =5V, V _O =0.9V V _{IN} =12V, V _O =2.5V V _{IN} =12V, V _O =5V	Vo	- - -	30 40 45	- - -	mV _{PK-PK}
	LGA20C	V _{IN} =5V, V _O =0.9V V _{IN} =12V, V _O =2.5V V _{IN} =12V, V _O =5V	Vo	- - -	25 45 70		mV _{PK-PK}
	Signal Low Voltage	Unit Off		0	-	0.4	V
Enable Specifications	Signal Low Current	V _{IN} =12V		0	400	-	μΑ
Enable Specifications	Signal High Voltage	Unit On		15	-	-	V
	Signal High Current			-	1	-	μΑ
Flammability		All		UL94V-0			
Moisture Sensitivity Level (MSL)		All	3				
Material Type		All	FR4 PCB				
Solderability				J-STD-002B IEC-60068-2-58			

Output Specifications

Table 3. Output Specifications con't								
Parameter		Conditions	Symbol	Min	Nom	Max	Unit	
Output Capacitance (Internal)		All	Co	-	20	-	μF	
	LGA03C	$\begin{array}{c} V_{\rm IN} = 12V, V_{\rm O} = 0.9V \\ V_{\rm IN} = 12V, V_{\rm O} = 2.5V \\ V_{\rm IN} = 12V, V_{\rm O} = 5V \end{array}$	Co	10 10 10	- - -	3300 1100 450	μF	
Output Startup Capacitance	LGA06C	$\begin{array}{c} V_{\rm IN}{=}12V, V_{\rm O}{=}0.9V \\ V_{\rm IN}{=}12V, V_{\rm O}{=}2.5V \\ V_{\rm IN}{=}12V, V_{\rm O}{=}5V \end{array}$	Co	10 10 10	- - -	7500 1500 750	μF	
(External)	LGA10C	V _{IN} =12V, V _O =0.9V V _{IN} =12V, V _O =2.5V V _{IN} =12V, V _O =5V	Co	10 10 10	- - -	7500 2400 1200	μF	
	LGA20C	V _{IN} =12V, V _O =0.9V V _{IN} =12V, V _O =2.5V V _{IN} =12V, V _O =5V	Co	50 50 50	- -	7500 2400 500	μF	
		V ₀ =0.9V	$\pm V_{O}$	-	85	-	mV	
LGA03C Dynamic Load Response ¹ Peak Deviation Setting Time		1.5-3A step load	Τ _s	-	8	-	μS	
		V ₀ =2.5V	±V _O	-	95	-	mV	
	Ũ	1.5-3A step load	Ts	-	15	-	μS	
	. 1	V _o =0.9V 3-6A step load	$\pm V_{O}$	-	125	-	mV	
LGA06C Dynamic Load Respor			Ts	-	8	-	μS	
	Peak Deviation Setting Time	V ₀ =2.5V	$\pm V_{\rm O}$	-	175	-	mV	
	-	3-6A step load	Ts	-	8	-	μS	
	. 1	V ₀ =0.9V	±V _O	-	90	-	mV	
LGA10C Dynamic Load Respor		5-10A step load	Ts	-	8	-	μS	
	Peak Deviation Setting Time	V ₀ =2.5V	$\pm V_{O}$	-	135	-	mV	
	0	5-10A step load	Ts	-	8	-	μS	
	1	V ₀ =0.9V	±V _O	-	95	-	mV	
LGA20C Dynamic Load Respor		10-20A step load	Ts	-	12	-	μS	
	Peak Deviation Setting Time	V ₀ =2.5V	±V _O	-	175	-	mV	
	<u> </u>	10-20Å step load	Ts	-	20	-	μS	

Note 1 - For all the dynamic load response test, V_{IN}=12V, slew rate is 5A/µS. Output capacitance is 10µF for LGA03C, LGA06C and LGA10C, 50µF for LGA20C.



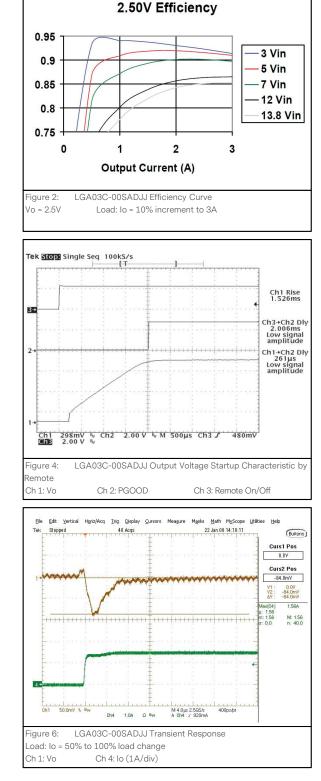
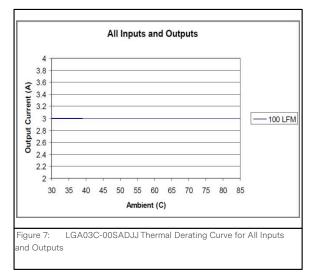
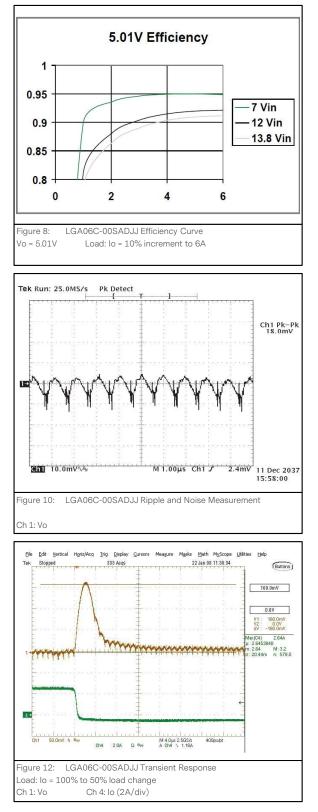
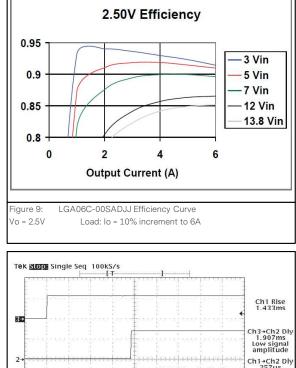
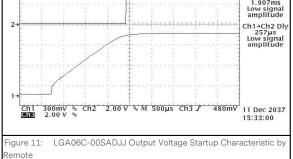

Output Specifications

Table 3. Output Specifications con't										
Parameter		Conditions	Symbol	Min	Nom	Max	Unit			
	LGA03C		I _O	-	6	-	А			
Over Current Protection	LGA06C	Hiccup Mode	Ι _Ο	-	11	-	А			
Over Current Protection	LGA10C	HICCUP MODE	Ι _Ο	-	20	-	А			
	LGA20C		Ι _Ο	-	27	-	А			
Switching Frequency	LGA03C		f _{sw}	I	1000	-	kHz			
	LGA06C	All	f _{sw}	-	1000	-	kHz			
Switching Frequency	LGA10C		f _{sw}	-	1000	-	kHz			
	LGA20C		f _{sw}	-	800	-	kHz			
	LGA03C			-	3	-	°C/W			
Junction to Case Thermal	LGA06C	All		-	3	-	°C/W			
Resistance	LGA10C	All		-	9	-	°C/W			
	LGA20C			-	2	-	°C/W			
MTBF	ITBF			-	20	-	MHours			
Weight		All		-	0.1	-	OZ			

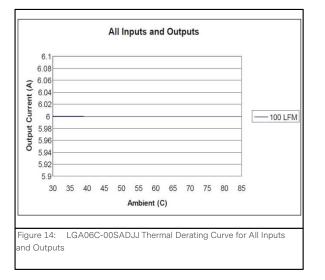

LGA03C-00SADJJ Performance Curves


Advanced Energy

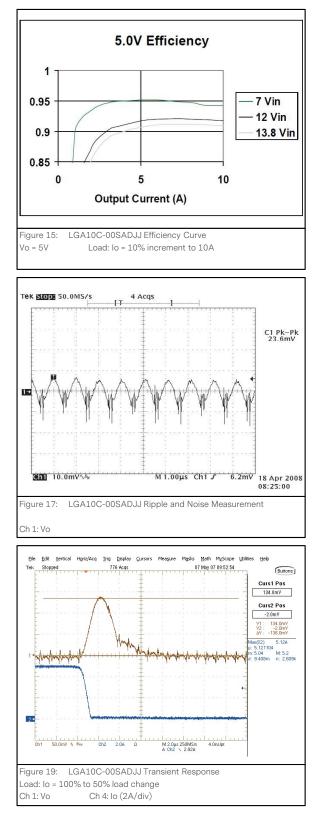

LGA03C-00SADJJ Performance Curves

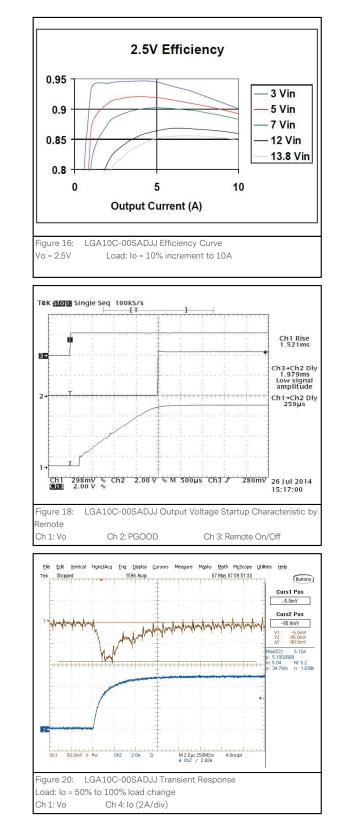


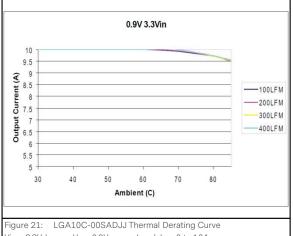
LGA06C-00SADJJ Performance Curves

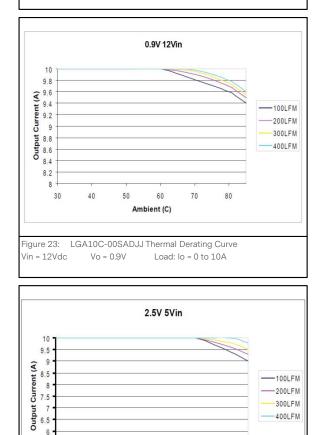


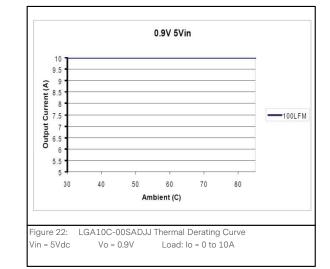
Ch 1: Vo Ch 2: PGOOD Ch 3: Remote On/Off

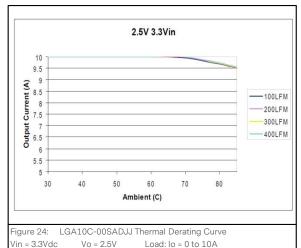


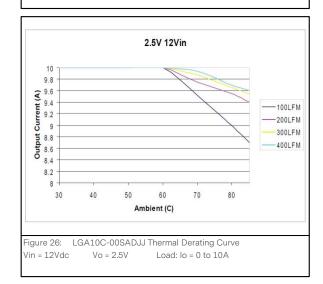

LGA06C-00SADJJ Performance Curves


LGA10C-00SADJJ Performance Curves




Advanced Energy


LGA10C-00SADJJ Performance Curves



Vin = 3.3Vdc Vo = 0.9V Load: Io = 0 to 10A

6

5

30

40

50

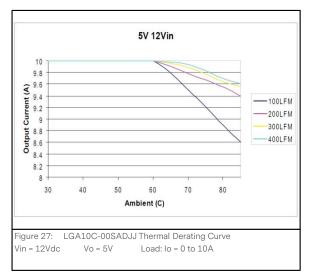
Vo = 2.5V

60

Ambient (C)

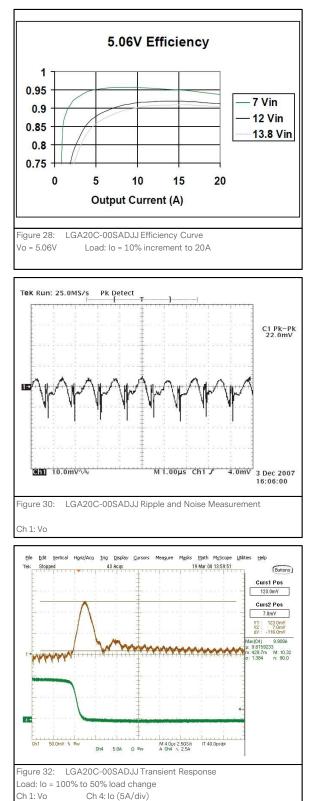
LGA10C-00SADJJ Thermal Derating Curve

70


Load: Io = 0 to 10A

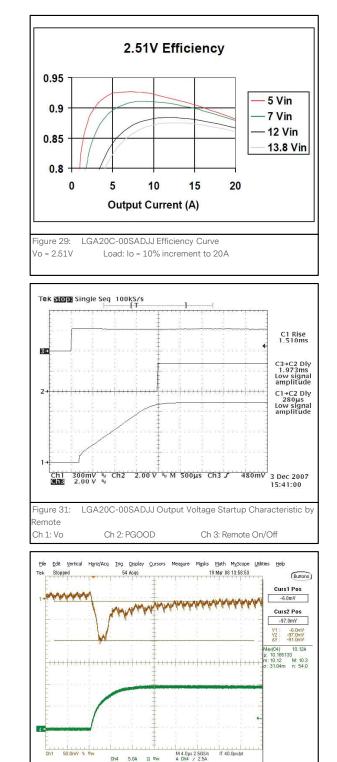
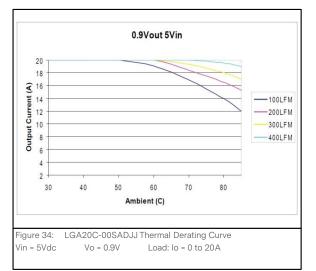
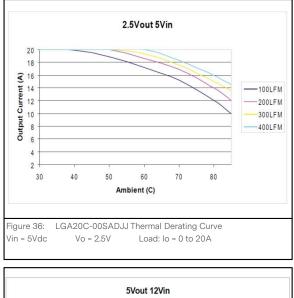
80

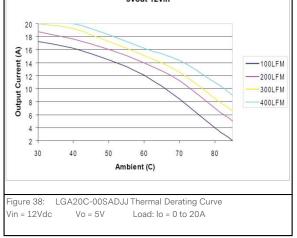
5.5


Figure 25: Vin = 5Vdc

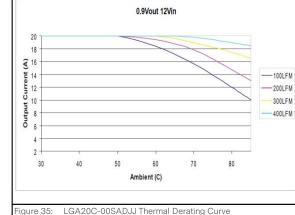
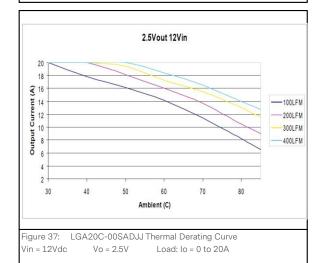
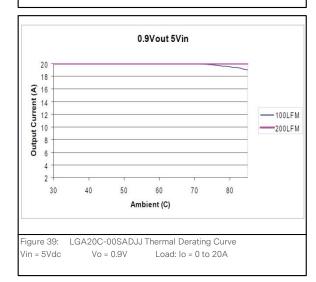
LGA10C-00SADJJ Performance Curves

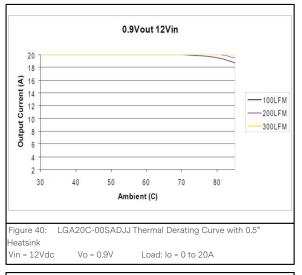
LGA20C-00SADJJ Performance Curves

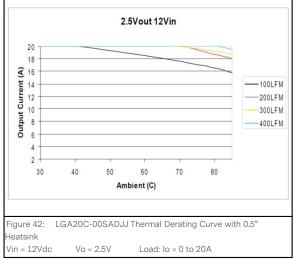




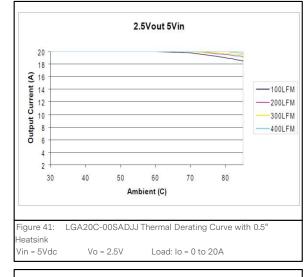

Figure 33: LGA20C-00SADJJ Transient Response Load: Io = 50% to 100% load change Ch 1: Vo Ch 4: Io (5A/div)

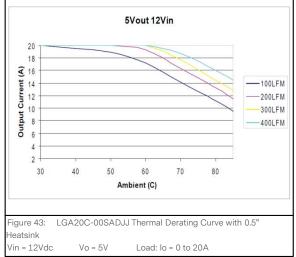
LGA20C-00SADJJ Performance Curves


Figure 35:LGA20C-00SADJJ Thermal Derating CurveVin = 12VdcVo = 0.9VLoad: Io = 0 to 20A







LGA20C-00SADJJ Performance Curves

PROTECTION FUNCTION SPECIFICATIONS

Current Limit and Short-Circuit Protection

The LGA C models have a built-in non-latching current limit function and full continuous short-circuit protection. The module monitors current through the top and bottom FET. When an overcurrent condition occurs, the module goes into hiccup mode, where it attempts to power up periodically to determine if the problem persists.

The output current level is sensed through the voltage drop across the top and bottom FETs during their on time. This type of sensing is affected by temperature due to the change in Rdson. At higher temperatures, the Rdson increases, which lowers the overcurrent point.

Note that the module specifications are not guaranteed when the unit is operated in an overcurrent condition.

Undervoltage Lockout (UVLO)

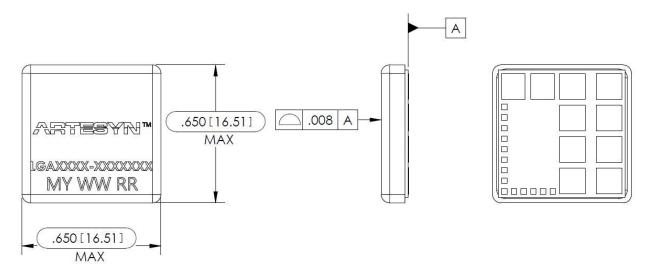
The LGA C models have built-in undervoltage lockout to ensure reliable output power. The lockout prevents the unit from operating when the input voltage is too low.

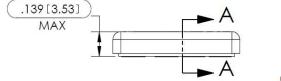
The default undervoltage lockout is set as follows:

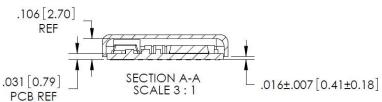
LGA 3/6/10C: 2.9 V

LGA20C: 4.3 V

The UVLO for the LGA03/06/10C can be adjusted with the following equation:


$$R_{uvlo} = \frac{14.8 \times 6.81}{6.81 \times V_{turn_{on}} - 18.16} (K\Omega)$$


The UVLO for the LGA20C can be adjusted with the following equation:


$$R_{uvlo} = \frac{30.1 \times 4.22}{8.577 \times V_{uurn_on} - 34.32} (K\Omega)$$

Mechanical Drawing

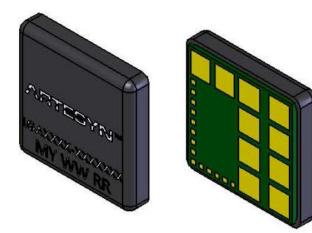
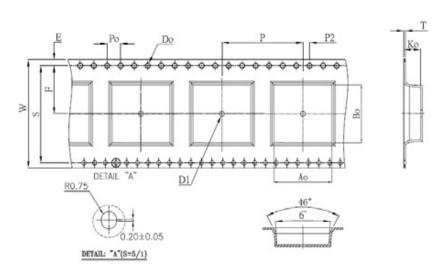


Table 4. Component Height						
Model #	DIM A in (mm)					
LGA03	0.129 (3.27)					
LGA06	0.129 (3.27)					
LGA10	0.129 (3.27)					
LGA20	0.210 (5.33)					

Notes: Dimensions are in inches and (millimeters) Tolerance: ± 0.010 in (± 0.25 mm)


Pin Assignment

Pin No.	Name	Pin No.	Name
1	Vout	13	+Offset
2	Vout	14	-Sense
3	Vout	15	+Sense
4	Vout	16	NC
5	GND	17	NC
6	GND	18	NC
7	GND	19	NC
8	GND	20	NC
9	Vin	21	Enable
10	Vin	22	Power Good
11	NC	23	Margin Control
12	-Offset	24	Trim

Packing

LGA03C, 06C, 10C

EIA Dimensions (mm)							
W	32.0 ±0.30						
E	1.75 ±0.10						
F	14.2 ±0.10						
So	28.4 ±0.10						
Р	24.0 ±0.10						
Po	4.0 ±0.10						
P2	2.0 ±0.10						
Do	Ø 1.5 +0.10 -0.00						
D1	Ø 2.0 MIN						
Т	0.40 ±0.05						
Ao	16.6 ±0.10						
Во	16.7 ±0.10						
Ко	3.7 ±0.10						

EIA Dimensions (mm)

32.0 ±0.30

1.75 ±0.10

14.2 ±0.10

28.4 ±0.10

24.0 ±0.10

4.0 ±0.10

2.0 ±0.10

Ø 1.5 +0.10 -0.00

Ø 2.0 MIN

0.40 ±0.05

16.8 ±0.10

16.8 ±0.10

5.8 ±0.10

W

Е

F

So

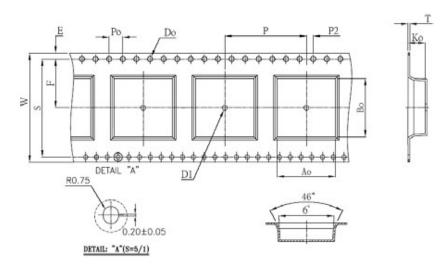
Ρ

Ро

P2

Do

D1

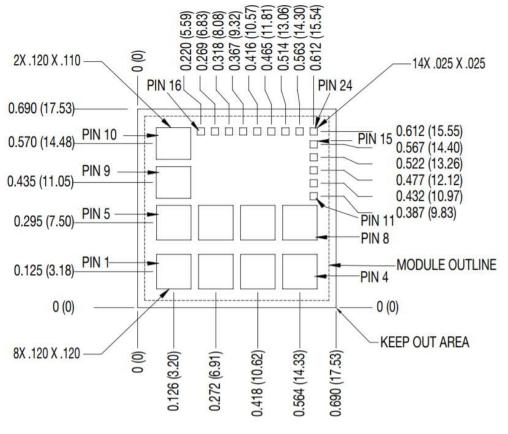

Т

Ao

Во

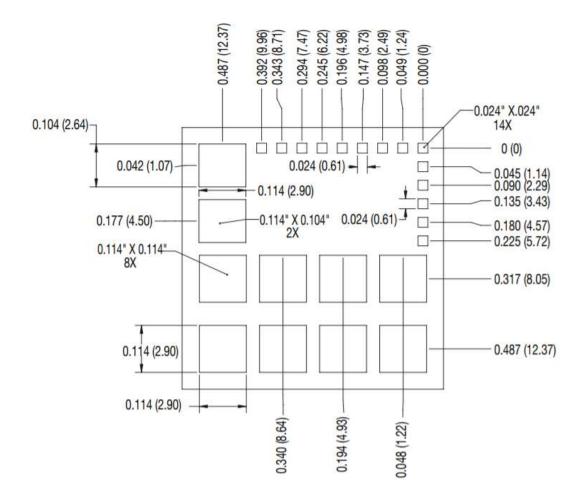
Ko

LGA20C



- Note 1 T&R packaging comes in Standard 13" reel size.
- Note 2 Tape material: Black, Anti-static Polystyrene Amine free.
- Note 3 Surface Resistivity: <1012 Ohms/Sq
- Note 4 Module quantity/reel: LGA03C, LGA06C, LGA10 C = 600 pcs LGA20C = 450pcs.

Recommended Application


System Board Footprint - Unit: in (mm)

Tolerance Note: ±0.010 (0.25)

Solder Paste Stencil - Unit: in (mm)

Note: The stencil thickness for soldering module to load board is recommended as 6mil. (see window paning on page 29)

Electrical Description

The LGA C Series is implemented using a voltage mode single-phase synchronous buck topology. A block diagram of the converter is shown in Figure 44.

The output voltage is adjustable over a range of 0.59 to 5.1V by using a resistor or voltage as described on Page 25. (Factory preset is 0.591V.)

The converter can be shut down via the remote ON/OFF. The remote ON/OFF operates with positive logic that is compatible with popular logic devices. Positive logic implies that the converter is enabled if the remote ON/OFF input is high (or floating), and disabled if it is low.

The power good signal is an open collector output that is pulled low by the PWM controller when it detects the output is not within $\pm 10\%$ of its set value.

The output is monitored for overcurrent and short-circuit conditions. When the PWM controller detects an overcurrent condition, it forces the module into hiccup mode.

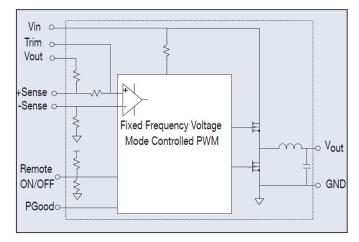


Figure 44: Electrical Block Diagram

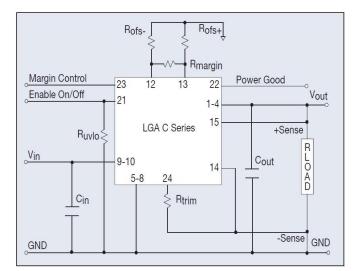


Figure 45: Standard Application Drawing

Wide Operating Temperature Range

The LGA C series's ability to accommodate a wide range of ambient temperatures is the result of its extremely high power conversion efficiency and resultant low power dissipation, combined with the excellent thermal performance of the thermally enhanced cover. The maximum output power that the module delivers will depend on a number of parameters, primarily:

- Input voltage range
- Output load current
- Air velocity (forced or natural convection)
- Addition of heatsink

The LGA C Series module has an operating temperature range of -40 °C to 85 °C with suitable derating.

Remote ON/OFF

The remote ON/OFF input allows external circuitry to put the LGA C Series converter into a low dissipation sleep mode. Positive logic remote ON/OFF is available as standard.

The EPD is turned on if the remote ON/OFF pin is high or floating. Pulling the pin low will turn off the EPD. To guarantee turn-on, the enable voltage must be above 0.50V. To turn off the enable voltage, it must be pulled below 0.2V.

Figures illustrating the response of the unit to switching on and off using the remote ON/OFF feature are included in the performance curves on pages 8, 10, 12 and 15. Figures 46 and 47 show various circuits for driving the remote ON/OFF feature. The remote ON/OFF input can be driven through a discrete device (e.g. a bipolar signal transistor) or directly from a logic gate output. The output of the logic gate may be an open-collector (or open-drain) device. Please note the remote ON/OFF pin should only be driven in the following range:

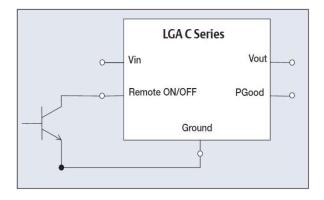


Figure 46: Remote ON/OFF Input Drive Circuit for Non-Isolated Bipolar

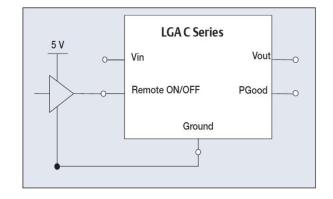


Figure 47: Remote ON/OFF Input Drive Circuit for Logic Driver

Output Voltage Adjustment

The output voltage of the module can be adjusted from 0.59 to 5.1V. This is accomplished by connecting an external resistor between Trim and -Sense as shown in Figure 48 and graphed in Figure 51 or by driving the Trim pin with an external voltage as shown in Figure 49. High accuracy setpoints can be achieved with the use of a potentiometer as shown in Figure 50.

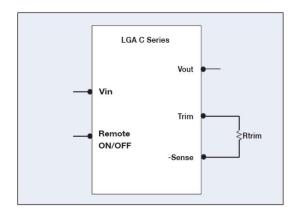
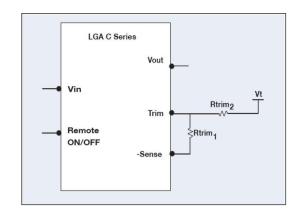
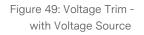




Figure 48: Output Voltage Trim

The trim equation for the basic configuration shown in Figure 48 is:

$$R_{trim} = \frac{1.182}{V_{out} - 0.591} (K\Omega)$$

Where V_{out} is the desired output voltage and R_{trim} is the resistance required between the Trim pin and -Sense.

The trim equation for the external voltage configuration shown in Figure 49 is:

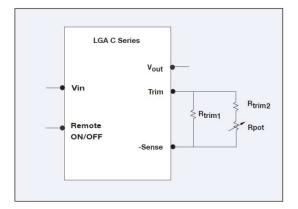
$$R_{trim2} = \frac{R_{trim1}(1.182 - 2Vt)}{R_{trim1}(V_{out} - 0.591) - 1.182}(K\Omega)$$

Where V_{out} is the desired output voltage, R_{trim1} (k Ω) and R_{trim2} (k Ω) are the resistors in Figure 49 and Vt is the applied external output voltage.

Note: If, Vin \leq 5V, Vpin24 (max) = Vin

If, Vin > 5V, Vpin24 (max) = 5V

The trim equation for the potentiometer configuration show in Figure 50.


$$V_{out} = \frac{0.591}{(R_{trim2} + R_{pot})R_{trim1}} * (2R_{trim2} + 2R_{pot} + R_{trim1}R_{trim2} + R_{trim1}R_{pot} + 2R_{trim1})$$

Where V_{out} is the desired output voltage, $R_{trim1}(k\Omega)$ and $R_{trim2}(k\Omega)$ are the resistors in Figure 50 and R_{pot} is the resistance of the potentiometer.

LGA C Series

APPLICATION NOTES

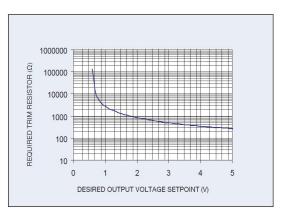


Figure 51: Typical Trim Curves

Power Good

The LGA C modules have a power good indicator output. This output pin uses positive logic and is open-collector. Also, the power good output is able to sink 10mA.

When the output of the module is within \pm 10% of the nominal set point, the Power Good pin can be pulled high. Note that Power Good should not be pulled higher than the following conditions:

If, Vin ≤ 5V, Vpgood (max) = Vin

If, Vin > 5V, Vpgood (max) = 5V

Current Sink Capabilities

The LGA C series of dc-dc converters is able to current sink as well as current source. The EPD operates over the full output current range at any specified output voltage. This feature allows the LGA C to fit into any voltage termination application.

Output Capacitance

The LGA C Series has output capacitors inside the converter. Limited output capacitance, 10μ F for the 3A/6A/10A and 50μ F for the 20A, is required for stable operation. When powering loads with large dynamic current requirements, improved voltage regulation is obtained by inserting low ESR capacitors as close as possible to the load. Low ESR ceramic capacitors will handle the short duration high frequency components of the dynamic current requirement. In addition, higher values of electrolytic capacitors should be used to handle the mid-frequency components.

It is equally important to use good design practices when configuring the dc distribution system. Low resistance and low inductance PCB layout traces should be utilized, particularly in the high current output section. Remember that the capacitance of the distribution system and the associated ESR are within the feedback loop of the power capabilities, thus affecting the stability and dynamic response of the module.

Note that the maximum rated value of output capacitance varies between models and for each output voltage setpoint. A stability vs. Load Capacitance calculator, (see your sales representative), details how an external load capacitance influences the gain and phase margins of the LGA C Series modules.

Setting Margin Control

To margin the output voltage up, pull the margin control pin high. To margin down, pull the margin control pin low. If the pin is left floating, the feature is disabled. The maximum margining range is $\pm 33\%$ of the output default voltage setting, with maximum output at 5.5V. The equations for margining up and down are as follows:

$$V_{margin_up} = 0.1182 * \frac{R_{margin}}{R_{ofs+}} * \frac{R_{trim} + 2k}{R_{trim}}$$
$$V_{margin_down} = 0.1182 * \frac{R_{margin}}{R_{ofs-}} * \frac{R_{trim} + 2k}{R_{trim}}$$

Note: The margin control pin cannot be pulled in the following range:

If, $Vin \le 5V$ then $V_{margin}(max) = Vin$

If, Vin > 5V then $V_{margin}(max) = 5V$

See Table 5 for suggested margining values.

Table 5. Sugg	gested Margin	Values						
Margin Up an	d Down 5%							
V _{out_nom} (V)	R _{trim} (kΩ)	R _{margin} (k Ω)	R _{ofs-} (kΩ)	R _{ofs+} (kΩ)	V _{margin_} down (V)	V _{out _down} (V)	V _{margin_up} (V)	V _{out_up} (V)
0.9	3.83	2.49	10.0	10.0	0.045	0.855	0.045	0.945
1.2	1.96	2.49	10.0	10.0	0.059	1.141	0.059	1.259
1.8	0.976	2.49	10.0	10.0	0.090	1.710	0.090	1.890
2.5	0.619	2.49	10.0	10.0	0.125	2.375	0.125	2.625
3.3	0.432	2.49	10.0	10.0	0.166	3.134	0.166	3.466
5.0	0.267	2.49	10.0	10.0	0.250	4.750	0.250	5.250
Margin Up an	d Down 10%							
0.9	3.83	4.99	10.0	10.0	0.090	0.810	0.090	0.990
1.2	1.96	4.99	10.0	10.0	0.119	1.081	0.199	1.319
1.8	0.976	4.99	10.0	10.0	0.180	1.620	0.180	1.980
2.5	0.619	4.99	10.0	10.0	0.250	2.250	0.250	2.750
3.3	0.432	4.99	10.0	10.0	0.332	2.968	0.332	3.632
5.0	0.267	4.99	10.0	10.0	0.501	4.499	0.501	5.501

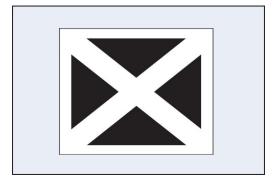
Reflow Guidelines

For a SnPb process: pads should be above 183 °C (liquidus) for 90 seconds max (60-75 seconds typical) with a peak temperature of 225 °C. For a lead-free SAC305 process: pads should be above 217 °C (liquidus) for 90 seconds max (60-75 seconds typical) with a peak temperature of 250 °C.

The LGA Series products passed solderability testing per J-STD-002B and IEC-60068-2-58. The test was conducted by Process Sciences, Inc in August, 2007.

Water Washing

Water-washing is not recommended.


Interface Finish

Electroless Nickel Immersion Gold (ENIG).

Solder Paste

Solderballs are caused between LGA and substrate due to printing an excessive amount of solderpaste. Stencil apertures should be windowpaned; dividing them into quadrants rather than printing a continuous deposit over the entire pad. This will control the amount of solder available to form a joint between LGA and customer board. Additionally, this will also reduce the formation of voids.

Solder Paste Window Paning

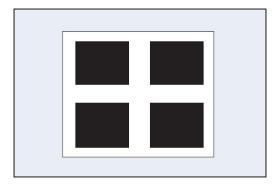


Figure 52: Window Paning

Thermal Hotspot

The electrical operating conditions of the LGA (shown below) determine how much power is dissipated within the converter.

- Input voltage (Vin)
- Output voltage (Vo)
- Output current (lo)

The following parameters further influence the thermal stresses experienced by the converter:

- Ambient temperature
- Air velocity
- Thermal efficiency of the end system application
- Parts mounted on system PCB that may block airflow
- Real airflow characteristics at the converter location

In order to simplify the thermal design, a number of thermal derating plots are provided in this Technical Reference Note. These derating graphs show the load current of the LGA versus the ambient air temperature and forced air velocity. However, since the thermal performance is heavily dependent upon the final system application, the user needs to ensure the thermal reference point temperatures are kept within the recommended temperature rating. It is recommended that the thermal reference point temperatures are measured using a thermocouple or an IR camera. In order to comply with stringent Artesyn Embedded Technologies derating criteria the ambient temperature should never exceed 85 °C. The case maximum recommended temperature is 100 °C. Please contact Artesyn for further support.

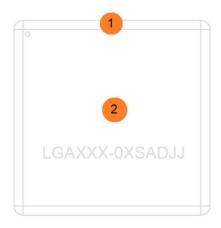
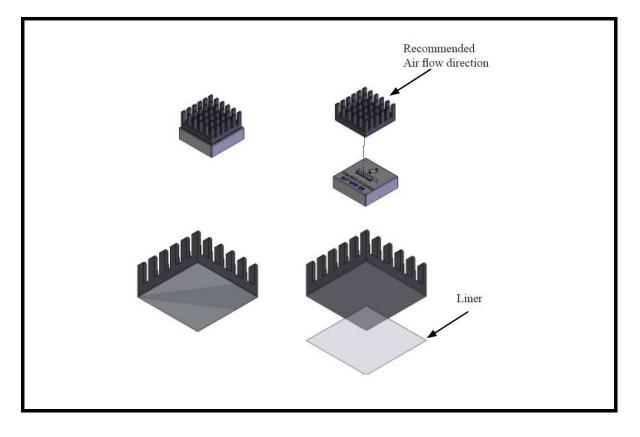



Figure 53: Thermal Hotspots 1: With Heatsink 2: Without Heatsink

Heatsink Accessory

System should be reflowed before attaching heatsink. Clean the top surface of the case with isopropyl alcohol and ensure the case surface is air-dried. Remove clear plastic liner from bottom of the heatsink to expose the adhesive. Align heatsink with case and apply even pressure (10-15 PSI) for 10-20 seconds.

Heatsink Number System with Options:

Product Family		Product		Purpose		Height*
LGA	-	HTSK	-	KIT	-	XXX
Land Grid Array		Heatsink		Heatsink and Adhesive		Total Height (LGA20 + Heatsink) 045 = 0.45" 048 = 0.48" 050 = 0.50"

 $\ensuremath{\mathsf{Note}}^*\xspace$ - Height is the total height of the LGA20C-00SADJJ with heatsink attached.

LGA C Series

RECORD OF REVISION AND CHANGES

Issue	Date	Description	Originators
1.0	03.20.2018	First Issue	A. Zhang
1.1	12.24.2018	Update the system board footprint	K. Wang
1.2	03.17.2020	Update the system board footprint and solder paste stencil	A. Zhang
1.3	09.14.2022	Update the input voltage to 3.4V	A. Zhang

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

For international contact information, visit advancedenergy.com.

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.

